These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19469521)

  • 1. Decomposition of the factors that govern binding site preference in a multiple rotaxane.
    Angelo JP; Sohlberg K
    J Phys Chem A; 2009 Jun; 113(24):6724-9. PubMed ID: 19469521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Study of Binding Site Preference in [2]Rotaxanes.
    Foster ME; Sohlberg K
    J Chem Theory Comput; 2007 Nov; 3(6):2221-33. PubMed ID: 26636214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of amphiphilic bistable [2]rotaxane langmuir monolayers at the air/water interface.
    Jang SS; Jang YH; Kim YH; Goddard WA; Choi JW; Heath JR; Laursen BW; Flood AH; Stoddart JF; Nørgaard K; Bjørnholm T
    J Am Chem Soc; 2005 Oct; 127(42):14804-16. PubMed ID: 16231934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the intracellular transport mechanism of a cleft-[2]rotaxane.
    Bao X; Isaacsohn I; Drew AF; Smithrud DB
    J Am Chem Soc; 2006 Sep; 128(37):12229-38. PubMed ID: 16967974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of co-conformational selectivity in a [3]rotaxane.
    Zheng X; Sohlberg K
    J Phys Chem A; 2006 Oct; 110(42):11862-9. PubMed ID: 17048818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes.
    Tachibana Y; Kawasaki H; Kihara N; Takata T
    J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices.
    Choi JW; Flood AH; Steuerman DW; Nygaard S; Braunschweig AB; Moonen NN; Laursen BW; Luo Y; DeIonno E; Peters AJ; Jeppesen JO; Xu K; Stoddart JF; Heath JR
    Chemistry; 2005 Dec; 12(1):261-79. PubMed ID: 16320367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure, binding energy, and solvation structure of the streptavidin-biotin supramolecular complex: ONIOM and 3D-RISM study.
    Li Q; Gusarov S; Evoy S; Kovalenko A
    J Phys Chem B; 2009 Jul; 113(29):9958-67. PubMed ID: 19545155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IR spectroscopy on jet-cooled isolated two-station rotaxanes.
    Rijs AM; Kay ER; Leigh DA; Buma WJ
    J Phys Chem A; 2011 Sep; 115(34):9669-75. PubMed ID: 21524109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer across a mechanical bond of a rotaxane.
    Onagi H; Rebek J
    Chem Commun (Camb); 2005 Sep; (36):4604-6. PubMed ID: 16158129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host-rotaxanes model proteins that promote ligand association through a favorable change in configurational entropy.
    Zhu J; Smithrud DB
    Org Biomol Chem; 2007 Sep; 5(18):2992-9. PubMed ID: 17728866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable neutral bistable rotaxanes.
    Vignon SA; Jarrosson T; Iijima T; Tseng HR; Sanders JK; Stoddart JF
    J Am Chem Soc; 2004 Aug; 126(32):9884-5. PubMed ID: 15303838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge transfer chromophore-stopped [2]rotaxane through [2 + 2] cycloaddition.
    Zhou W; Xu J; Zheng H; Liu H; Li Y; Zhu D
    J Org Chem; 2008 Oct; 73(19):7702-9. PubMed ID: 18781803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interlocked host anion recognition by an indolocarbazole-containing [2]rotaxane.
    Brown A; Mullen KM; Ryu J; Chmielewski MJ; Santos SM; Felix V; Thompson AL; Warren JE; Pascu SI; Beer PD
    J Am Chem Soc; 2009 Apr; 131(13):4937-52. PubMed ID: 19296631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative conformational study of redox-active [2]rotaxanes, part 1: Methodology and application to a model [2]rotaxane.
    Altobello S; Nikitin K; Stolarczyk JK; Lestini E; Fitzmaurice D
    Chemistry; 2008; 14(4):1107-16. PubMed ID: 18000924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the chair conformation of a mannopyranose in a large-amplitude [2]rotaxane molecular machine.
    Coutrot F; Busseron E
    Chemistry; 2009; 15(21):5186-90. PubMed ID: 19229918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shuttling dynamics in an acid-base-switchable [2]rotaxane.
    Garaudée S; Silvi S; Venturi M; Credi A; Flood AH; Stoddart JF
    Chemphyschem; 2005 Oct; 6(10):2145-52. PubMed ID: 16208757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionally rigid bistable [2]rotaxanes.
    Nygaard S; Leung KC; Aprahamian I; Ikeda T; Saha S; Laursen BW; Kim SY; Hansen SW; Stein PC; Flood AH; Stoddart JF; Jeppesen JO
    J Am Chem Soc; 2007 Jan; 129(4):960-70. PubMed ID: 17243833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy landscape of a hydrogen-bonded non-degenerate molecular shuttle.
    Günbaş DD; Zalewski L; Brouwer AM
    Chem Commun (Camb); 2010 Mar; 46(12):2061-3. PubMed ID: 20221492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient potassium-ion-templated synthesis and controlled destruction of [2]rotaxanes based on cascade complexes.
    Han T; Chen CF
    J Org Chem; 2008 Oct; 73(19):7735-42. PubMed ID: 18759481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.