These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 19469578)
1. Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage. Reetz MT; Bocola M; Wang LW; Sanchis J; Cronin A; Arand M; Zou J; Archelas A; Bottalla AL; Naworyta A; Mowbray SL J Am Chem Soc; 2009 Jun; 131(21):7334-43. PubMed ID: 19469578 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Reetz MT; Torre C; Eipper A; Lohmer R; Hermes M; Brunner B; Maichele A; Bocola M; Arand M; Cronin A; Genzel Y; Archelas A; Furstoss R Org Lett; 2004 Jan; 6(2):177-80. PubMed ID: 14723522 [TBL] [Abstract][Full Text] [Related]
3. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering. Kotik M; Stepánek V; Kyslík P; Maresová H J Biotechnol; 2007 Oct; 132(1):8-15. PubMed ID: 17875334 [TBL] [Abstract][Full Text] [Related]
4. Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution. Reetz MT; Zheng H Chembiochem; 2011 Jul; 12(10):1529-35. PubMed ID: 21567703 [TBL] [Abstract][Full Text] [Related]
5. Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. van Loo B; Spelberg JH; Kingma J; Sonke T; Wubbolts MG; Janssen DB Chem Biol; 2004 Jul; 11(7):981-90. PubMed ID: 15271356 [TBL] [Abstract][Full Text] [Related]
6. Laboratory evolution of an epoxide hydrolase - towards an enantioconvergent biocatalyst. Kotik M; Archelas A; Faměrová V; Oubrechtová P; Křen V J Biotechnol; 2011 Oct; 156(1):1-10. PubMed ID: 21854816 [TBL] [Abstract][Full Text] [Related]
7. Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives. Kotik M; Brichac J; Kyslík P J Biotechnol; 2005 Dec; 120(4):364-75. PubMed ID: 16061300 [TBL] [Abstract][Full Text] [Related]
8. Learning from directed evolution: Further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity. Reetz MT; Puls M; Carballeira JD; Vogel A; Jaeger KE; Eggert T; Thiel W; Bocola M; Otte N Chembiochem; 2007 Jan; 8(1):106-12. PubMed ID: 17133645 [TBL] [Abstract][Full Text] [Related]
9. Effect of Binding on Enantioselectivity of Epoxide Hydrolase. Zaugg J; Gumulya Y; Bodén M; Mark AE; Malde AK J Chem Inf Model; 2018 Mar; 58(3):630-640. PubMed ID: 29424533 [TBL] [Abstract][Full Text] [Related]
10. Addressing the numbers problem in directed evolution. Reetz MT; Kahakeaw D; Lohmer R Chembiochem; 2008 Jul; 9(11):1797-804. PubMed ID: 18567049 [TBL] [Abstract][Full Text] [Related]
11. Laboratory evolution of robust and enantioselective Baeyer-Villiger monooxygenases for asymmetric catalysis. Reetz MT; Wu S J Am Chem Soc; 2009 Oct; 131(42):15424-32. PubMed ID: 19807086 [TBL] [Abstract][Full Text] [Related]
12. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library. Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402 [TBL] [Abstract][Full Text] [Related]
13. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis. Zheng H; Reetz MT J Am Chem Soc; 2010 Nov; 132(44):15744-51. PubMed ID: 20958062 [TBL] [Abstract][Full Text] [Related]
14. Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution. Ivancic M; Valinger G; Gruber K; Schwab H J Biotechnol; 2007 Mar; 129(1):109-22. PubMed ID: 17147964 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm. Feng X; Sanchis J; Reetz MT; Rabitz H Chemistry; 2012 Apr; 18(18):5646-54. PubMed ID: 22434591 [TBL] [Abstract][Full Text] [Related]
16. Converting an esterase into an epoxide hydrolase. Jochens H; Stiba K; Savile C; Fujii R; Yu JG; Gerassenkov T; Kazlauskas RJ; Bornscheuer UT Angew Chem Int Ed Engl; 2009; 48(19):3532-5. PubMed ID: 19350592 [TBL] [Abstract][Full Text] [Related]
17. Fungal epoxide hydrolases: new landmarks in sequence-activity space. Smit MS Trends Biotechnol; 2004 Mar; 22(3):123-9. PubMed ID: 15036862 [TBL] [Abstract][Full Text] [Related]
18. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis. Prasad S; Bocola M; Reetz MT Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964 [TBL] [Abstract][Full Text] [Related]
19. Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Wu K; Wang H; Sun H; Wei D Appl Microbiol Biotechnol; 2015 Nov; 99(22):9511-21. PubMed ID: 26088175 [TBL] [Abstract][Full Text] [Related]