These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 19469968)

  • 21. Validation of the red blood cell test system as in vitro assay for the rapid screening of irritation potential of surfactants.
    Pape WJ; Pfannenbecker U; Hoppe U
    Mol Toxicol; 1987-1988 Fall; 1(4):525-36. PubMed ID: 3509700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An alternative test battery in detecting ocular irritancy of agrochemicals.
    Tavaszi J; Budai P; Pálovics A; Kismányoki A
    Commun Agric Appl Biol Sci; 2008; 73(4):891-5. PubMed ID: 19226840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Short Time Exposure (STE) test for predicting eye irritation potential: intra-laboratory reproducibility and correspondence to globally harmonized system (GHS) and EU eye irritation classification for 109 chemicals.
    Takahashi Y; Hayashi K; Abo T; Koike M; Sakaguchi H; Nishiyama N
    Toxicol In Vitro; 2011 Oct; 25(7):1425-34. PubMed ID: 21513790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation.
    Kruszewski FH; Walker TL; DiPasquale LC
    Fundam Appl Toxicol; 1997 Apr; 36(2):130-40. PubMed ID: 9143482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prevalidation of a new in vitro reconstituted human cornea model to assess the eye irritating potential of chemicals.
    Van Goethem F; Adriaens E; Alépée N; Straube F; De Wever B; Cappadoro M; Catoire S; Hansen E; Wolf A; Vanparys P
    Toxicol In Vitro; 2006 Feb; 20(1):1-17. PubMed ID: 16019187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Culture of the primary corneal epithelium as a potential component of test batteries for eye irritancy testing.
    Sladowski D; Liberek I; Lipski K; Ozga T; Olkowska-Truchanowicz J; Szaflik J
    Toxicol In Vitro; 2005 Oct; 19(7):875-8. PubMed ID: 16061345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Survey of ocular irritation predictive capacity using Chorioallantoic Membrane Vascular Assay (CAMVA) and Bovine Corneal Opacity and Permeability (BCOP) test historical data for 319 personal care products over fourteen years.
    Donahue DA; Kaufman LE; Avalos J; Simion FA; Cerven DR
    Toxicol In Vitro; 2011 Mar; 25(2):563-72. PubMed ID: 21147215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preliminary findings on the use of protozoa (Tetrahymena thermophila) as models for ocular irritation testing in rabbits.
    Silverman J
    Lab Anim Sci; 1983 Feb; 33(1):56-9. PubMed ID: 6834775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro eye irritancy test of lauryl derivatives using the reconstructed rabbit corneal epithelium model.
    Matsuda S; Hisama M; Shibayama H; Itou N; Iwaki M
    Toxicol In Vitro; 2009 Jun; 23(4):555-60. PubMed ID: 19490837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of an opacity lensometer for determining corneal clarity following excimer laser photoablation.
    Andrade HA; McDonald MB; Liu JC; Abdelmegeed M; Varnell R; Sunderland G
    Refract Corneal Surg; 1990; 6(5):346-51. PubMed ID: 2257259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Are local tolerance tests in animals always necessary?
    Andermann G; Erhart M
    Methods Find Exp Clin Pharmacol; 1983 Jun; 5(5):321-33. PubMed ID: 6621178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The acute toxicity and primary irritancy of glutaraldehyde solutions.
    Ballantyne B; Myers RC
    Vet Hum Toxicol; 2001 Aug; 43(4):193-202. PubMed ID: 11474730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of an in vitro test battery for use within a stepwise approach to the assessment of ocular irritancy in vivo.
    Lewis RW; McCall JC; Botham PA
    Toxicol In Vitro; 1994 Aug; 8(4):865-6. PubMed ID: 20693032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of two in vitro and two in vivo methods for the measurement of irritancy.
    Sterzel W; Bartnik FG; Matthies W; Kästner W; Künstler K
    Toxicol In Vitro; 1990; 4(4-5):698-701. PubMed ID: 20702260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study of skin and eye irritation in the rabbit due to different sources of some cosmetic raw materials (Part II).
    Guillot JP; Giauffret JY; Martini MC
    Int J Cosmet Sci; 1979 Feb; 1(1):27-57. PubMed ID: 19467038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The chorioallantoic membrane in the prediction of eye irritation potential.
    Lawrence RS; Ackroyd DM; Williams DL
    Toxicol In Vitro; 1990; 4(4-5):321-3. PubMed ID: 20702187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple method to assess surfactant-induced bovine corneal opacity in vitro: preliminary findings.
    Muir CK
    Toxicol Lett; 1984 Aug; 22(2):199-203. PubMed ID: 6474509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Testing ocular irritancy in vitro with the silicon microphysiometer.
    Bruner LH; Miller KR; Owicki JC; Parce JW; Muir VC
    Toxicol In Vitro; 1991; 5(4):277-84. PubMed ID: 20732027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of primary rabbit cornea cells to replace the Draize rabbit eye irritancy test.
    Watanabe M; Watanabe K; Suzuki K; Nikaido O; Ishii I; Konishi H; Tanaka N; Sugahara T
    Toxicol In Vitro; 1989; 3(4):329-34. PubMed ID: 20702300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation of detergent action on cells in vitro and possible correlations with in vivo data.
    Scaife MC
    Int J Cosmet Sci; 1982 Oct; 4(5):179-93. PubMed ID: 19469962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.