These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 19470100)
1. Differential expression of the CBF pathway and cell cycle-related genes in Arabidopsis accessions in response to chronic low-temperature exposure. Lee YP; Fleming AJ; Körner Ch; Meins F Plant Biol (Stuttg); 2009 May; 11(3):273-83. PubMed ID: 19470100 [TBL] [Abstract][Full Text] [Related]
2. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Vogel JT; Zarka DG; Van Buskirk HA; Fowler SG; Thomashow MF Plant J; 2005 Jan; 41(2):195-211. PubMed ID: 15634197 [TBL] [Abstract][Full Text] [Related]
3. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions. Le MQ; Engelsberger WR; Hincha DK Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434 [TBL] [Abstract][Full Text] [Related]
4. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance. Wang Y; Hua J Plant J; 2009 Oct; 60(2):340-9. PubMed ID: 19563440 [TBL] [Abstract][Full Text] [Related]
5. Systemic low temperature signaling in Arabidopsis. Gorsuch PA; Sargeant AW; Penfield SD; Quick WP; Atkin OK Plant Cell Physiol; 2010 Sep; 51(9):1488-98. PubMed ID: 20813832 [TBL] [Abstract][Full Text] [Related]
6. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Franklin KA; Whitelam GC Nat Genet; 2007 Nov; 39(11):1410-3. PubMed ID: 17965713 [TBL] [Abstract][Full Text] [Related]
7. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Fursova OV; Pogorelko GV; Tarasov VA Gene; 2009 Jan; 429(1-2):98-103. PubMed ID: 19026725 [TBL] [Abstract][Full Text] [Related]
8. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Kim HJ; Hyun Y; Park JY; Park MJ; Park MK; Kim MD; Kim HJ; Lee MH; Moon J; Lee I; Kim J Nat Genet; 2004 Feb; 36(2):167-71. PubMed ID: 14745450 [TBL] [Abstract][Full Text] [Related]
9. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. McKhann HI; Gery C; Bérard A; Lévêque S; Zuther E; Hincha DK; De Mita S; Brunel D; Téoulé E BMC Plant Biol; 2008 Oct; 8():105. PubMed ID: 18922165 [TBL] [Abstract][Full Text] [Related]
10. Fitness benefits and costs of cold acclimation in Arabidopsis thaliana. Zhen Y; Dhakal P; Ungerer MC Am Nat; 2011 Jul; 178(1):44-52. PubMed ID: 21670576 [TBL] [Abstract][Full Text] [Related]
11. Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Zhen Y; Ungerer MC Mol Biol Evol; 2008 Dec; 25(12):2547-55. PubMed ID: 18775899 [TBL] [Abstract][Full Text] [Related]
12. CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Zhou MQ; Shen C; Wu LH; Tang KX; Lin J Crit Rev Biotechnol; 2011 Jun; 31(2):186-92. PubMed ID: 20919819 [TBL] [Abstract][Full Text] [Related]
13. Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures. Griffith M; Timonin M; Wong AC; Gray GR; Akhter SR; Saldanha M; Rogers MA; Weretilnyk EA; Moffatt B Plant Cell Environ; 2007 May; 30(5):529-38. PubMed ID: 17407531 [TBL] [Abstract][Full Text] [Related]
14. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Sánchez-Calderón L; López-Bucio J; Chacón-López A; Cruz-Ramírez A; Nieto-Jacobo F; Dubrovsky JG; Herrera-Estrella L Plant Cell Physiol; 2005 Jan; 46(1):174-84. PubMed ID: 15659445 [TBL] [Abstract][Full Text] [Related]
15. Characterization of growth-phase-specific responses to cold in Arabidopsis thaliana suspension-cultured cells. Sasaki Y; Takahashi K; Oono Y; Seki M; Yoshida R; Shinozaki K; Uemura M Plant Cell Environ; 2008 Mar; 31(3):354-65. PubMed ID: 18088333 [TBL] [Abstract][Full Text] [Related]
16. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276 [TBL] [Abstract][Full Text] [Related]
17. Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Gehan MA; Park S; Gilmour SJ; An C; Lee CM; Thomashow MF Plant J; 2015 Nov; 84(4):682-93. PubMed ID: 26369909 [TBL] [Abstract][Full Text] [Related]
18. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Dong MA; Farré EM; Thomashow MF Proc Natl Acad Sci U S A; 2011 Apr; 108(17):7241-6. PubMed ID: 21471455 [TBL] [Abstract][Full Text] [Related]
19. Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. El Kayal W; Navarro M; Marque G; Keller G; Marque C; Teulieres C J Exp Bot; 2006; 57(10):2455-69. PubMed ID: 16816002 [TBL] [Abstract][Full Text] [Related]
20. Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana. Jackson MW; Stinchcombe JR; Korves TM; Schmitt J Mol Ecol; 2004 Nov; 13(11):3609-15. PubMed ID: 15488017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]