These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 19470117)
1. Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments. Rubio de Casas R; Vargas P; Pérez-Corona E; Cano E; Manrique E; García-Verdugo C; Balaguer L Plant Biol (Stuttg); 2009 May; 11(3):464-72. PubMed ID: 19470117 [TBL] [Abstract][Full Text] [Related]
2. Elucidating the role of genetic drift and natural selection in cork oak differentiation regarding drought tolerance. Ramírez-Valiente JA; Lorenzo Z; Soto A; Valladares F; Gil L; Aranda I Mol Ecol; 2009 Sep; 18(18):3803-15. PubMed ID: 19732337 [TBL] [Abstract][Full Text] [Related]
3. Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Ramírez-Valiente JA; Sánchez-Gómez D; Aranda I; Valladares F Tree Physiol; 2010 May; 30(5):618-27. PubMed ID: 20357344 [TBL] [Abstract][Full Text] [Related]
4. Field patterns of leaf plasticity in adults of the long-lived evergreen Quercus coccifera. Rubio De Casas R; Vargas P; Pérez-Corona E; Manrique E; Quintana JR; García-Verdugo C; Balaguer L Ann Bot; 2007 Aug; 100(2):325-34. PubMed ID: 17576660 [TBL] [Abstract][Full Text] [Related]
5. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Maron JL; Elmendorf SC; Vilà M Evolution; 2007 Aug; 61(8):1912-24. PubMed ID: 17683433 [TBL] [Abstract][Full Text] [Related]
6. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Bresson CC; Vitasse Y; Kremer A; Delzon S Tree Physiol; 2011 Nov; 31(11):1164-74. PubMed ID: 21908436 [TBL] [Abstract][Full Text] [Related]
7. Genetic and phenotypic variation among geographically isolated populations of the globally threatened Dupont's lark Chersophilus duponti. García JT; Suárez F; Garza V; Calero-Riestra M; Hernández J; Pérez-Tris J Mol Phylogenet Evol; 2008 Jan; 46(1):237-51. PubMed ID: 17719801 [TBL] [Abstract][Full Text] [Related]
8. The phylogeographical history of the Iberian steppe plant Ferula loscosii (Apiaceae): a test of the abundant-centre hypothesis. Pérez-Collazos E; Sanchez-Gómez P; Jiménez F; Catalán P Mol Ecol; 2009 Mar; 18(5):848-61. PubMed ID: 19207254 [TBL] [Abstract][Full Text] [Related]
9. [Influence of genetic variation of oaks as forage substrate on the fitness components of green oak leaf roller]. Simchuk AP Tsitol Genet; 2008; 42(1):45-52. PubMed ID: 18411758 [TBL] [Abstract][Full Text] [Related]
10. Conservation genetics of the endangered Iberian steppe plant Ferula loscosii (Apiaceae). Pérez-Collazos E; Catalán P Plant Biol (Stuttg); 2008 Jul; 10(4):492-501. PubMed ID: 18557909 [TBL] [Abstract][Full Text] [Related]
11. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Sork VL; Davis FW; Westfall R; Flint A; Ikegami M; Wang H; Grivet D Mol Ecol; 2010 Sep; 19(17):3806-23. PubMed ID: 20723054 [TBL] [Abstract][Full Text] [Related]
12. QTL analysis of leaf morphological characters in a Quercus robur full-sib family (Q. robur x Q. robur ssp. slavonica). Gailing O Plant Biol (Stuttg); 2008 Sep; 10(5):624-34. PubMed ID: 18761500 [TBL] [Abstract][Full Text] [Related]
13. Genetic variation of oaks ( Quercus spp.) in Switzerland. 3. Lack of impact of postglacial recolonization history on nuclear gene loci. Finkeldey R; Mátyás G Theor Appl Genet; 2003 Jan; 106(2):346-52. PubMed ID: 12582862 [TBL] [Abstract][Full Text] [Related]
14. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes). Ramírez-Valiente JA; Koehler K; Cavender-Bares J Tree Physiol; 2015 May; 35(5):521-34. PubMed ID: 25939867 [TBL] [Abstract][Full Text] [Related]
15. Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Moran EV; Willis J; Clark JS Am J Bot; 2012 Jan; 99(1):92-100. PubMed ID: 22174334 [TBL] [Abstract][Full Text] [Related]
16. Influence of dry season on Quercus suber L. leaf traits in the Iberian Peninsula. Prats KA; Brodersen CR; Ashton MS Am J Bot; 2019 May; 106(5):656-666. PubMed ID: 31034587 [TBL] [Abstract][Full Text] [Related]
17. High variability of chloroplast DNA in three Mediterranean evergreen oaks indicates complex evolutionary history. Jiménez P; de Heredia UL; Collada C; Lorenzo Z; Gil L Heredity (Edinb); 2004 Nov; 93(5):510-5. PubMed ID: 15329661 [TBL] [Abstract][Full Text] [Related]
18. Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Valbuena-Carabaña M; González-Martínez SC; Hardy OJ; Gil L Mol Ecol; 2007 Mar; 16(6):1207-19. PubMed ID: 17391407 [TBL] [Abstract][Full Text] [Related]
19. Ecological speciation in the East Maui-endemic Dubautia (Asteraceae) species. Friar EA; Prince LM; Roalson EH; McGlaughlin ME; Cruse-Sanders JM; De Groot SJ; Porter JM Evolution; 2006 Sep; 60(9):1777-92. PubMed ID: 17089963 [TBL] [Abstract][Full Text] [Related]
20. Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak Quercus oleoides. Ramírez-Valiente JA; Deacon NJ; Etterson J; Center A; Sparks JP; Sparks KL; Longwell T; Pilz G; Cavender-Bares J Mol Ecol; 2018 May; 27(9):2176-2192. PubMed ID: 29577469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]