These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19470208)

  • 1. A novel wire mesh "cell" for studying lipid oxidative processes by fourier transform infrared spectroscopy.
    García-González DL; van de Voort FR
    Appl Spectrosc; 2009 May; 63(5):518-27. PubMed ID: 19470208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virgin olive oil stability study by mesh cell-FTIR spectroscopy.
    Tena N; Aparicio R; García-González DL
    Talanta; 2017 May; 167():453-461. PubMed ID: 28340745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform infrared spectroscopy imaging of live epithelial cancer cells under non-aqueous media.
    Soh J; Chueng A; Adio A; Cooper AJ; Birch BR; Lwaleed BA
    J Clin Pathol; 2013 Apr; 66(4):312-8. PubMed ID: 23393203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of primary and secondary oxidation products by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (NMR) in sunflower oil during storage.
    Guillén MD; Goicoechea E
    J Agric Food Chem; 2007 Dec; 55(26):10729-36. PubMed ID: 18038977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid method for the quantification of fatty acids in fats and oils with emphasis on trans fatty acids using Fourier Transform near infrared spectroscopy (FT-NIR).
    Azizian H; Kramer JK
    Lipids; 2005 Aug; 40(8):855-67. PubMed ID: 16296405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the quality of deep frying oils with Fourier transform near-infrared and mid-infrared spectroscopy.
    Du R; Lai K; Xiao Z; Shen Y; Wang X; Huang Y
    J Food Sci; 2012 Feb; 77(2):C261-6. PubMed ID: 22251019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PhotooxidationEffect in Liquid Lipid Matrices: Answers from an Innovative FTIR Spectroscopy Strategy with "Mesh Cell" Incubation.
    Tena N; Aparicio R; García-González DL
    J Agric Food Chem; 2018 Apr; 66(13):3541-3549. PubMed ID: 29526087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy.
    Muik B; Lendl B; Molina-Díaz A; Ayora-Cañada MJ
    Chem Phys Lipids; 2005 Apr; 134(2):173-82. PubMed ID: 15784235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic study of olive oil degradation monitored by fourier transform infrared spectrometry. Application to oil characterization.
    Román Falcó IP; Grané Teruel N; Prats Moya S; Martín Carratalá ML
    J Agric Food Chem; 2012 Nov; 60(47):11800-10. PubMed ID: 23137053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of acid number and base number in lubricants by Fourier transform infrared spectroscopy.
    van de Voort FR; Sedman J; Yaylayan V; Saint Laurent C
    Appl Spectrosc; 2003 Nov; 57(11):1425-31. PubMed ID: 14658158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared study of aging of edible oils by oxidative spectroscopic index and MCR-ALS chemometric method.
    Le Dréau Y; Dupuy N; Artaud J; Ollivier D; Kister J
    Talanta; 2009 Mar; 77(5):1748-56. PubMed ID: 19159793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of low trans fat edible oils by attenuated total reflection-Fourier transform infrared spectroscopy and gas chromatography: a comparison of analytical approaches.
    Tyburczy C; Mossoba MM; Fardin-Kia AR; Rader JI
    Anal Bioanal Chem; 2012 Aug; 404(3):809-19. PubMed ID: 22736229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Fourier transform-infrared spectroscopy to edible oils.
    Vlachos N; Skopelitis Y; Psaroudaki M; Konstantinidou V; Chatzilazarou A; Tegou E
    Anal Chim Acta; 2006 Jul; 573-574():459-65. PubMed ID: 17723561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new Fourier transform infrared method for the determination of moisture in edible oils.
    Al-Alawi A; van de Voort FR; Sedman J
    Appl Spectrosc; 2005 Oct; 59(10):1295-9. PubMed ID: 16274543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of triacylglycerols and edible oils by near-infrared Fourier transform Raman spectroscopy.
    Weng YM; Weng RH; Tzeng CY; Chen W
    Appl Spectrosc; 2003 Apr; 57(4):413-8. PubMed ID: 14658638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near infrared emission photometer for measuring the oxidative stability of edible oils.
    Vieira FS; Pasquini C
    Anal Chim Acta; 2013 Sep; 796():101-7. PubMed ID: 24016589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Usefulness of the frequency data of the fourier transform infrared spectra to evaluate the degree of oxidation of edible oils.
    Guillén MD; Cabo N
    J Agric Food Chem; 1999 Feb; 47(2):709-19. PubMed ID: 10563958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simplified FTIR chemometric method for simultaneous determination of four oxidation parameters of frying canola oil.
    Talpur MY; Hassan SS; Sherazi ST; Mahesar SA; Kara H; Kandhro AA; Sirajuddin
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():656-61. PubMed ID: 25985130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulated aging of lubricant oils by chemometric treatment of infrared spectra: potential antioxidant properties of sulfur structures.
    Amat S; Braham Z; Le Dréau Y; Kister J; Dupuy N
    Talanta; 2013 Mar; 107():219-24. PubMed ID: 23598215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stopped flow apparatus for time-resolved Fourier transform infrared difference spectroscopy of biological macromolecules in 1H2O.
    Masuch R; Moss DA
    Appl Spectrosc; 2003 Nov; 57(11):1407-18. PubMed ID: 14658156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.