BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19470213)

  • 1. Emission enhancement of laser-induced breakdown spectroscopy by localized surface plasmon resonance for analyzing plant nutrients.
    Ohta T; Ito M; Kotani T; Hattori T
    Appl Spectrosc; 2009 May; 63(5):555-8. PubMed ID: 19470213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings.
    Kim K; Kim DJ; Moon S; Kim D; Byun KM
    Nanotechnology; 2009 Aug; 20(31):315501. PubMed ID: 19597249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multipole plasmon resonances of submicron silver particles.
    Kumbhar AS; Kinnan MK; Chumanov G
    J Am Chem Soc; 2005 Sep; 127(36):12444-5. PubMed ID: 16144364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance.
    Huang W; Qian W; El-Sayed MA
    J Am Chem Soc; 2006 Oct; 128(41):13330-1. PubMed ID: 17031925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal gold and silver triangular nanoprisms.
    Millstone JE; Hurst SJ; Métraux GS; Cutler JI; Mirkin CA
    Small; 2009 Mar; 5(6):646-64. PubMed ID: 19306458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics.
    Haes AJ; Duyne RP
    Expert Rev Mol Diagn; 2004 Jul; 4(4):527-37. PubMed ID: 15225100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features.
    Corsi M; Cristoforetti G; Hidalgo M; Iriarte D; Legnaioli S; Palleschi V; Salvetti A; Tognoni E
    Appl Spectrosc; 2005 Jul; 59(7):853-60. PubMed ID: 16053554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label.
    Kajiura M; Nakanishi T; Iida H; Takada H; Osaka T
    J Colloid Interface Sci; 2009 Jul; 335(1):140-5. PubMed ID: 19395015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS enhancement by aggregated Au colloids: effect of particle size.
    Bell SE; McCourt MR
    Phys Chem Chem Phys; 2009 Sep; 11(34):7455-62. PubMed ID: 19690719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance assay for chloramphenicol.
    Yuan J; Oliver R; Aguilar MI; Wu Y
    Anal Chem; 2008 Nov; 80(21):8329-33. PubMed ID: 18837517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative hydrogen analysis of zircaloy-4 using low-pressure laser plasma technique.
    Kurniawan KH; Pardede M; Hedwig R; Lie ZS; Lie TJ; Kurniawan DP; Ramli M; Fukumoto K; Niki H; Abdulmadjid SN; Idris N; Maruyama T; Kagawa K; Tjia MO
    Anal Chem; 2007 Apr; 79(7):2703-7. PubMed ID: 17341055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of grinding methods for pellets preparation aiming at the analysis of plant materials by laser induced breakdown spectrometry.
    Gomes Mda S; Santos D; Nunes LC; de Carvalho GG; Leme Fde O; Krug FJ
    Talanta; 2011 Sep; 85(4):1744-50. PubMed ID: 21872013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy.
    Kaiser J; Samek O; Reale L; Liska M; Malina R; Ritucci A; Poma A; Tucci A; Flora F; Lai A; Mancini L; Tromba G; Zanini F; Faenov A; Pikuz T; Cinque G
    Microsc Res Tech; 2007 Feb; 70(2):147-53. PubMed ID: 17131357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of a cooperative mechanism in the adsorption of heavy metal ions to thiolated surface by in-situ surface plasmon resonance measurements.
    Kang T; Moon J; Oh S; Hong S; Chah S; Yi J
    Chem Commun (Camb); 2005 May; (18):2360-2. PubMed ID: 15877128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer screen photo-excited surface plasmon resonance imaging.
    Filippini D; Winquist F; Lundström I
    Anal Chim Acta; 2008 Sep; 625(2):207-14. PubMed ID: 18724996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer.
    Liu GL; Long YT; Choi Y; Kang T; Lee LP
    Nat Methods; 2007 Dec; 4(12):1015-7. PubMed ID: 18026109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy.
    Qi ZM; Xia S; Zou H
    Nanotechnology; 2009 Jun; 20(25):255702. PubMed ID: 19491460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic hydrogen emission induced by TEA CO(2) laser bombardment on solid samples at low pressure and its analytical application.
    Idris N; Terai S; Lie TJ; Kurniawan H; Kobayashi T; Maruyama T; Kagawa K
    Appl Spectrosc; 2005 Jan; 59(1):115-20. PubMed ID: 15720746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.