These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19470214)

  • 21. Polymer-oligopeptide composite coating for selective detection of explosives in water.
    Cerruti M; Jaworski J; Raorane D; Zueger C; Varadarajan J; Carraro C; Lee SW; Maboudian R; Majumdar A
    Anal Chem; 2009 Jun; 81(11):4192-9. PubMed ID: 19476386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-correlated Raman and fluorescence spectroscopy based on a silicon photomultiplier and time-correlated single photon counting technique.
    Zhang C; Zhang L; Yang R; Liang K; Han D
    Appl Spectrosc; 2013 Feb; 67(2):136-40. PubMed ID: 23622431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of Nanogram Microparticles from Explosives after Real Open-Air Explosions by Confocal Raman Microscopy.
    Zapata F; García-Ruiz C
    Anal Chem; 2016 Jul; 88(13):6726-33. PubMed ID: 27281604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TNT detection with 14N NQR: multipulse sequences and matched filter.
    Gregorovic A; Apih T
    J Magn Reson; 2009 Jun; 198(2):215-21. PubMed ID: 19299173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of visible and near-infrared Raman cross-sections of explosives in solution and in the solid state.
    Emmons ED; Guicheteau JA; Fountain AW; Christesen SD
    Appl Spectrosc; 2012 Jun; 66(6):636-43. PubMed ID: 22732533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultraviolet resonance Raman spectroscopy of explosives in solution and the solid state.
    Emmons ED; Tripathi A; Guicheteau JA; Fountain AW; Christesen SD
    J Phys Chem A; 2013 May; 117(20):4158-66. PubMed ID: 23656503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laser-based standoff detection of explosives: a critical review.
    Wallin S; Pettersson A; Ostmark H; Hobro A
    Anal Bioanal Chem; 2009 Sep; 395(2):259-74. PubMed ID: 19484226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene.
    Dasary SS; Singh AK; Senapati D; Yu H; Ray PC
    J Am Chem Soc; 2009 Sep; 131(38):13806-12. PubMed ID: 19736926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers.
    Serrano J; Moros J; Sánchez C; Macías J; Laserna JJ
    Anal Chim Acta; 2014 Jan; 806():107-16. PubMed ID: 24331046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proximal Detection of Traces of Energetic Materials with an Eye-Safe UV Raman Prototype Developed for Civil Applications.
    Chirico R; Almaviva S; Colao F; Fiorani L; Nuvoli M; Schweikert W; Schnürer F; Cassioli L; Grossi S; Murra D; Menicucci I; Angelini F; Palucci A
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multidimensional detection of nitroorganic explosives by gas chromatography-pyrolysis-ultraviolet detection.
    Hodyss R; Beauchamp JL
    Anal Chem; 2005 Jun; 77(11):3607-10. PubMed ID: 15924395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion.
    Moros J; Lorenzo JA; Laserna JJ
    Anal Bioanal Chem; 2011 Jul; 400(10):3353-65. PubMed ID: 21533640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of handheld Raman spectrometers for the detection of intact explosives.
    Kuehn M; Bates K; Tyler Davidson J; Monjardez G
    Forensic Sci Int; 2023 Dec; 353():111875. PubMed ID: 37924573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quality assurance testing of an explosives trace analysis laboratory--further improvements.
    Crowson A; Doyle SP; Todd CC; Watson S; Zolnhofer N
    J Forensic Sci; 2007 Jul; 52(4):830-7. PubMed ID: 17524053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A potential metallographic technique for the investigation of pipe bombings.
    Walsh GA; Inal OT; Romero VD
    J Forensic Sci; 2003 Sep; 48(5):945-60. PubMed ID: 14535659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel nanoaggregation detection technique of TNT using selective and ultrasensitive nanocurcumin as a probe.
    Pandya A; Goswami H; Lodha A; Menon SK
    Analyst; 2012 Apr; 137(8):1771-4. PubMed ID: 22378064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vapor Trace Collection and Direct Ultrasensitive Detection of Nitro-Explosives by 3D Microstructured Electrodes.
    Krivitsky V; Filanovsky B; Bourenko T; Granot E; Praiz A; Patolsky F
    Anal Chem; 2019 Nov; 91(22):14375-14382. PubMed ID: 31621301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of ultraviolet Raman spectroscopy for trace explosive checkpoint screening.
    Amin M; Wen P; Herzog WD; Kunz RR
    Anal Bioanal Chem; 2020 Jul; 412(19):4495-4504. PubMed ID: 32472147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy.
    Karpf A; Rao GN
    Appl Opt; 2009 Sep; 48(27):5061-6. PubMed ID: 19767919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical explosives detection: from color changes to fluorescence turn-on.
    Germain ME; Knapp MJ
    Chem Soc Rev; 2009 Sep; 38(9):2543-55. PubMed ID: 19690735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.