BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 19470399)

  • 41. Conformation and mode of membrane interaction in cyclotides. Spatial structure of kalata B1 bound to a dodecylphosphocholine micelle.
    Shenkarev ZO; Nadezhdin KD; Sobol VA; Sobol AG; Skjeldal L; Arseniev AS
    FEBS J; 2006 Jun; 273(12):2658-72. PubMed ID: 16817894
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new "era" for cyclotide sequencing.
    Colgrave ML; Poth AG; Kaas Q; Craik DJ
    Biopolymers; 2010; 94(5):592-601. PubMed ID: 20564007
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Capped acyclic permutants of the circular protein kalata B1.
    Simonsen SM; Daly NL; Craik DJ
    FEBS Lett; 2004 Nov; 577(3):399-402. PubMed ID: 15556617
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discovery, structure, function, and applications of cyclotides: circular proteins from plants.
    Weidmann J; Craik DJ
    J Exp Bot; 2016 Aug; 67(16):4801-12. PubMed ID: 27222514
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The cyclotide fingerprint in oldenlandia affinis: elucidation of chemically modified, linear and novel macrocyclic peptides.
    Plan MR; Göransson U; Clark RJ; Daly NL; Colgrave ML; Craik DJ
    Chembiochem; 2007 Jun; 8(9):1001-11. PubMed ID: 17534989
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A continent of plant defense peptide diversity: cyclotides in Australian Hybanthus (Violaceae).
    Simonsen SM; Sando L; Ireland DC; Colgrave ML; Bharathi R; Göransson U; Craik DJ
    Plant Cell; 2005 Nov; 17(11):3176-89. PubMed ID: 16199617
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyclotides, a promising molecular scaffold for peptide-based therapeutics.
    Jagadish K; Camarero JA
    Biopolymers; 2010; 94(5):611-6. PubMed ID: 20564025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein.
    Cemazar M; Joshi A; Daly NL; Mark AE; Craik DJ
    Structure; 2008 Jun; 16(6):842-51. PubMed ID: 18547517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel strategies for isolation and characterization of cyclotides: the discovery of bioactive macrocyclic plant polypeptides in the Violaceae.
    Göransson U; Svangård E; Claeson P; Bohlin L
    Curr Protein Pept Sci; 2004 Oct; 5(5):317-29. PubMed ID: 15544528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cyclotides as a basis for drug design.
    Craik DJ; Swedberg JE; Mylne JS; Cemazar M
    Expert Opin Drug Discov; 2012 Mar; 7(3):179-94. PubMed ID: 22468950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insecticidal plant cyclotides and related cystine knot toxins.
    Gruber CW; Cemazar M; Anderson MA; Craik DJ
    Toxicon; 2007 Mar; 49(4):561-75. PubMed ID: 17224167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail).
    Plan MR; Saska I; Cagauan AG; Craik DJ
    J Agric Food Chem; 2008 Jul; 56(13):5237-41. PubMed ID: 18557620
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Divalent cation coordination and mode of membrane interaction in cyclotides: NMR spatial structure of ternary complex Kalata B7/Mn2+/DPC micelle.
    Shenkarev ZO; Nadezhdin KD; Lyukmanova EN; Sobol VA; Skjeldal L; Arseniev AS
    J Inorg Biochem; 2008; 102(5-6):1246-56. PubMed ID: 18295894
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Variations in cyclotide expression in viola species.
    Trabi M; Svangård E; Herrmann A; Göransson U; Claeson P; Craik DJ; Bohlin L
    J Nat Prod; 2004 May; 67(5):806-10. PubMed ID: 15165141
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lysine-rich Cyclotides: A New Subclass of Circular Knotted Proteins from Violaceae.
    Ravipati AS; Henriques ST; Poth AG; Kaas Q; Wang CK; Colgrave ML; Craik DJ
    ACS Chem Biol; 2015 Nov; 10(11):2491-500. PubMed ID: 26322745
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics.
    Grover T; Mishra R; Bushra ; Gulati P; Mohanty A
    Peptides; 2021 Jan; 135():170430. PubMed ID: 33096195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cyclotide isolation and characterization.
    Craik DJ; Henriques ST; Mylne JS; Wang CK
    Methods Enzymol; 2012; 516():37-62. PubMed ID: 23034223
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovery of cyclotide-like protein sequences in graminaceous crop plants: ancestral precursors of circular proteins?
    Mulvenna JP; Mylne JS; Bharathi R; Burton RA; Shirley NJ; Fincher GB; Anderson MA; Craik DJ
    Plant Cell; 2006 Sep; 18(9):2134-44. PubMed ID: 16935986
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants.
    Nguyen GK; Lian Y; Pang EW; Nguyen PQ; Tran TD; Tam JP
    J Biol Chem; 2013 Feb; 288(5):3370-80. PubMed ID: 23195955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Processing of a 22 kDa precursor protein to produce the circular protein tricyclon A.
    Mulvenna JP; Sando L; Craik DJ
    Structure; 2005 May; 13(5):691-701. PubMed ID: 15893660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.