BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 19470491)

  • 1. The evolution of color vision in nocturnal mammals.
    Zhao H; Rossiter SJ; Teeling EC; Li C; Cotton JA; Zhang S
    Proc Natl Acad Sci U S A; 2009 Jun; 106(22):8980-5. PubMed ID: 19470491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats.
    Simões BF; Foley NM; Hughes GM; Zhao H; Zhang S; Rossiter SJ; Teeling EC
    Mol Biol Evol; 2019 Jan; 36(1):54-68. PubMed ID: 30476197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of ecological factors in shaping bat cone opsin evolution.
    Gutierrez EA; Schott RK; Preston MW; Loureiro LO; Lim BK; Chang BSW
    Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29618549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colour vision variation in leaf-nosed bats (Phyllostomidae): Links to cave roosting and dietary specialization.
    Kries K; Barros MAS; Duytschaever G; Orkin JD; Janiak MC; Pessoa DMA; Melin AD
    Mol Ecol; 2018 Sep; 27(18):3627-3640. PubMed ID: 30059176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of bat color vision genes.
    Wang D; Oakley T; Mower J; Shimmin LC; Yim S; Honeycutt RL; Tsao H; Li WH
    Mol Biol Evol; 2004 Feb; 21(2):295-302. PubMed ID: 14660703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs.
    Veilleux CC; Louis EE; Bolnick DA
    Mol Biol Evol; 2013 Jun; 30(6):1420-37. PubMed ID: 23519316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates.
    Melin AD; Matsushita Y; Moritz GL; Dominy NJ; Kawamura S
    Proc Biol Sci; 2013 May; 280(1759):20130189. PubMed ID: 23536597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Euarchontan Opsin Variation Brings New Focus to Primate Origins.
    Melin AD; Wells K; Moritz GL; Kistler L; Orkin JD; Timm RM; Bernard H; Lakim MB; Perry GH; Kawamura S; Dominy NJ
    Mol Biol Evol; 2016 Apr; 33(4):1029-41. PubMed ID: 26739880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dichromatic vision in a fruit bat with diurnal proclivities: the Samoan flying fox (Pteropus samoensis).
    Melin AD; Danosi CF; McCracken GF; Dominy NJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Dec; 200(12):1015-22. PubMed ID: 25319538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians.
    Kawamura S; Kubotera N
    J Mol Evol; 2004 Mar; 58(3):314-21. PubMed ID: 15045486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera).
    Shen YY; Liu J; Irwin DM; Zhang YP
    PLoS One; 2010 Jan; 5(1):e8838. PubMed ID: 20098620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish.
    Luehrmann M; Carleton KL; Cortesi F; Cheney KL; Marshall NJ
    Mol Ecol; 2019 Jun; 28(12):3025-3041. PubMed ID: 30977927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention and losses of ultraviolet-sensitive visual pigments in bats.
    Li L; Chi H; Liu H; Xia Y; Irwin DM; Zhang S; Liu Y
    Sci Rep; 2018 Aug; 8(1):11933. PubMed ID: 30093712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate.
    Perry GH; Martin RD; Verrelli BC
    Mol Biol Evol; 2007 Sep; 24(9):1963-70. PubMed ID: 17575304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Duplication of the Short-Wavelength-Sensitive Opsin in Sea Snakes: Evidence for Reexpanded Color Sensitivity Following Ancestral Regression.
    Rossetto IH; Sanders KL; Simões BF; Van Cao N; Ludington AJ
    Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37434309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.
    Jacobs GH
    Vis Neurosci; 2013 Mar; 30(1-2):39-53. PubMed ID: 23286388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence from opsin genes rejects nocturnality in ancestral primates.
    Tan Y; Yoder AD; Yamashita N; Li WH
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14712-6. PubMed ID: 16192351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of the green-light-sensitive visual opsin genes (RH2) in teleost fishes.
    Musilova Z; Cortesi F
    Vision Res; 2023 May; 206():108204. PubMed ID: 36868011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Archelosaurian Color Vision, Parietal Eye Loss, and the Crocodylian Nocturnal Bottleneck.
    Emerling CA
    Mol Biol Evol; 2017 Mar; 34(3):666-676. PubMed ID: 27940498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional preservation and variation in the cone opsin genes of nocturnal tarsiers.
    Moritz GL; Ong PS; Perry GH; Dominy NJ
    Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1717):. PubMed ID: 28193820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.