These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19470779)

  • 1. Time to fatigue is increased in mouse muscle at 37 degrees C; the role of iron and reactive oxygen species.
    Reardon TF; Allen DG
    J Physiol; 2009 Oct; 587(Pt 19):4705-16. PubMed ID: 19470779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of mitochondrial ATP-sensitive potassium channels on fatigue in mouse muscle fibers.
    García MC; Hernández A; Sánchez JA
    Biochem Biophys Res Commun; 2009 Jul; 385(1):28-32. PubMed ID: 19427835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 degrees C.
    Moopanar TR; Allen DG
    J Physiol; 2005 Apr; 564(Pt 1):189-99. PubMed ID: 15718257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide.
    Arbogast S; Reid MB
    Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R698-705. PubMed ID: 15178539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temperature does not alter fatigability in intact mouse skeletal muscle fibres.
    Place N; Yamada T; Zhang SJ; Westerblad H; Bruton JD
    J Physiol; 2009 Oct; 587(Pt 19):4717-24. PubMed ID: 19675072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance.
    Reardon TF; Allen DG
    Exp Physiol; 2009 Jun; 94(6):720-30. PubMed ID: 19201785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle.
    Cheng AJ; Willis SJ; Zinner C; Chaillou T; Ivarsson N; Ørtenblad N; Lanner JT; Holmberg HC; Westerblad H
    J Physiol; 2017 Dec; 595(24):7413-7426. PubMed ID: 28980321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species formation during tetanic contractions in single isolated Xenopus myofibers.
    Zuo L; Nogueira L; Hogan MC
    J Appl Physiol (1985); 2011 Sep; 111(3):898-904. PubMed ID: 21700897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres.
    Chin ER; Allen DG
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):813-24. PubMed ID: 8815213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC.
    Reid MB
    Free Radic Biol Med; 2008 Jan; 44(2):169-79. PubMed ID: 18191753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise-induced oxidative stress: Friend or foe?
    Powers SK; Deminice R; Ozdemir M; Yoshihara T; Bomkamp MP; Hyatt H
    J Sport Health Sci; 2020 Sep; 9(5):415-425. PubMed ID: 32380253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen Species as Agents of Fatigue.
    Reid MB
    Med Sci Sports Exerc; 2016 Nov; 48(11):2239-2246. PubMed ID: 27285492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28 degrees C.
    Bruton JD; Lännergren J; Westerblad H
    J Appl Physiol (1985); 1998 Aug; 85(2):478-83. PubMed ID: 9688723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incubation with sodium nitrite attenuates fatigue development in intact single mouse fibres at physiological
    Bailey SJ; Gandra PG; Jones AM; Hogan MC; Nogueira L
    J Physiol; 2019 Nov; 597(22):5429-5443. PubMed ID: 31541562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature.
    Westerblad H; Bruton JD; Lännergren J
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):193-204. PubMed ID: 9097943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery.
    Cheng AJ; Yamada T; Rassier DE; Andersson DC; Westerblad H; Lanner JT
    J Physiol; 2016 Sep; 594(18):5149-60. PubMed ID: 26857536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres.
    Chin ER; Allen DG
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):831-40. PubMed ID: 9769425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of shortening velocity of skinned skeletal muscle fibers in conditions that mimic fatigue.
    Karatzaferi C; Franks-Skiba K; Cooke R
    Am J Physiol Regul Integr Comp Physiol; 2008 Mar; 294(3):R948-55. PubMed ID: 18077511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.
    Bruton JD; Place N; Yamada T; Silva JP; Andrade FH; Dahlstedt AJ; Zhang SJ; Katz A; Larsson NG; Westerblad H
    J Physiol; 2008 Jan; 586(1):175-84. PubMed ID: 18006575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle.
    Zhang SJ; Bruton JD; Katz A; Westerblad H
    J Physiol; 2006 Apr; 572(Pt 2):551-9. PubMed ID: 16455685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.