These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19470804)

  • 1. Genomic analyses reveal a conserved glutathione homeostasis pathway in the invertebrate chordate Ciona intestinalis.
    Nava GM; Lee DY; Ospina JH; Cai SY; Gaskins HR
    Physiol Genomics; 2009 Nov; 39(3):183-94. PubMed ID: 19470804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription of genes involved in glutathione biosynthesis in the solitary tunicate Ciona intestinalis exposed to metals.
    Franchi N; Ferro D; Ballarin L; Santovito G
    Aquat Toxicol; 2012 Jun; 114-115():14-22. PubMed ID: 22417760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus.
    Gissi C; Pesole G; Cattaneo E; Tartari M
    BMC Genomics; 2006 Nov; 7():288. PubMed ID: 17092333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling genomic regulatory networks in the simple chordate, Ciona intestinalis.
    Shi W; Levine M; Davidson B
    Genome Res; 2005 Dec; 15(12):1668-74. PubMed ID: 16339364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium.
    Franchi N; Piccinni E; Ferro D; Basso G; Spolaore B; Santovito G; Ballarin L
    Aquat Toxicol; 2014 Jul; 152():47-56. PubMed ID: 24727215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of neuropeptide- and hormone-encoding genes in the Ciona intestinalis larval brain.
    Hamada M; Shimozono N; Ohta N; Satou Y; Horie T; Kawada T; Satake H; Sasakura Y; Satoh N
    Dev Biol; 2011 Apr; 352(2):202-14. PubMed ID: 21237141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic approaches reveal unexpected genetic divergence within Ciona intestinalis.
    Suzuki MM; Nishikawa T; Bird A
    J Mol Evol; 2005 Nov; 61(5):627-35. PubMed ID: 16205978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptidomic analysis of the central nervous system of the protochordate, Ciona intestinalis: homologs and prototypes of vertebrate peptides and novel peptides.
    Kawada T; Ogasawara M; Sekiguchi T; Aoyama M; Hotta K; Oka K; Satake H
    Endocrinology; 2011 Jun; 152(6):2416-27. PubMed ID: 21467196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-wide survey of the genes for planar polarity signaling or convergent extension-related genes in Ciona intestinalis and phylogenetic comparisons of evolutionary conserved signaling components.
    Hotta K; Takahashi H; Ueno N; Gojobori T
    Gene; 2003 Oct; 317(1-2):165-85. PubMed ID: 14604806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pitx homeobox genes in Ciona and amphioxus show left-right asymmetry is a conserved chordate character and define the ascidian adenohypophysis.
    Boorman CJ; Shimeld SM
    Evol Dev; 2002; 4(5):354-65. PubMed ID: 12356265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics identifies a cis-regulatory module that activates transcription in specific subsets of neurons in Ciona intestinalis larvae.
    Yoshida R; Horie T; Tsuda M; Kusakabe TG
    Dev Growth Differ; 2007 Oct; 49(8):657-67. PubMed ID: 17711474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fgf genes in the basal chordate Ciona intestinalis.
    Satou Y; Imai KS; Satoh N
    Dev Genes Evol; 2002 Oct; 212(9):432-8. PubMed ID: 12373588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The non-LTR retrotransposons in Ciona intestinalis: new insights into the evolution of chordate genomes.
    Permanyer J; Gonzàlez-Duarte R; Albalat R
    Genome Biol; 2003; 4(11):R73. PubMed ID: 14611659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics reveal ancient forms of stanniocalcin in amphioxus and tunicate.
    Roch GJ; Sherwood NM
    Integr Comp Biol; 2010 Jul; 50(1):86-97. PubMed ID: 21558190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperthermic stress-induced increase in the expression of glutamate-cysteine ligase and glutathione levels in the symbiotic sea anemone Aiptasia pallida.
    Sunagawa S; Choi J; Forman HJ; Medina M
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Sep; 151(1):133-8. PubMed ID: 18602489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and analysis of Ancylostoma ceylanicum glutamate-cysteine ligase.
    Wiśniewski M; Lapiński M; Zdziarska A; Długosz E; Bąska P
    Mol Biochem Parasitol; 2014 Aug; 196(1):12-20. PubMed ID: 25092620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascidians as a vertebrate-like model organism for physiological studies of Rho GTPase signaling.
    Philips A; Blein M; Robert A; Chambon JP; Baghdiguian S; Weill M; Fort P
    Biol Cell; 2003 Jul; 95(5):295-302. PubMed ID: 12941527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The repertoire of heterotrimeric G proteins and RGS proteins in Ciona intestinalis.
    Prasobh R; Manoj N
    PLoS One; 2009 Oct; 4(10):e7349. PubMed ID: 19806206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of cellular GSH biosynthetic capacity via TAT-mediated protein transduction of wild-type or a dominant-negative mutant of glutamate cysteine ligase alters cell sensitivity to oxidant-induced cytotoxicity.
    Backos DS; Brocker CN; Franklin CC
    Toxicol Appl Pharmacol; 2010 Feb; 243(1):35-45. PubMed ID: 19914271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genomewide survey of developmentally relevant genes in Ciona intestinalis. VII. Molecules involved in the regulation of cell polarity and actin dynamics.
    Sasakura Y; Yamada L; Takatori N; Satou Y; Satoh N
    Dev Genes Evol; 2003 Jun; 213(5-6):273-83. PubMed ID: 12740699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.