These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 19471117)

  • 1. Rapamycin decelerates cellular senescence.
    Demidenko ZN; Zubova SG; Bukreeva EI; Pospelov VA; Pospelova TV; Blagosklonny MV
    Cell Cycle; 2009 Jun; 8(12):1888-95. PubMed ID: 19471117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth stimulation leads to cellular senescence when the cell cycle is blocked.
    Demidenko ZN; Blagosklonny MV
    Cell Cycle; 2008 Nov; 7(21):3355-61. PubMed ID: 18948731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forever young, slim and fit: rapamycin to the rescue.
    Darzynkiewicz Z
    Cell Cycle; 2009 Jun; 8(12):1820-1. PubMed ID: 19471126
    [No Abstract]   [Full Text] [Related]  

  • 4. p21(Waf1) is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate.
    Romanov VS; Abramova MV; Svetlikova SB; Bykova TV; Zubova SG; Aksenov ND; Fornace AJ; Pospelova TV; Pospelov VA
    Cell Cycle; 2010 Oct; 9(19):3945-55. PubMed ID: 20935470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEK drives cyclin D1 hyperelevation during geroconversion.
    Leontieva OV; Demidenko ZN; Blagosklonny MV
    Cell Death Differ; 2013 Sep; 20(9):1241-9. PubMed ID: 23852369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence: duration of cell cycle arrest and MTOR activity determine geroconversion.
    Leontieva OV; Blagosklonny MV
    Cell Cycle; 2013 Sep; 12(18):3063-9. PubMed ID: 23974099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapamycin, proliferation and geroconversion to senescence.
    Blagosklonny MV
    Cell Cycle; 2018; 17(24):2655-2665. PubMed ID: 30541374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying pharmacologic suppression of cellular senescence: prevention of cellular hypertrophy versus preservation of proliferative potential.
    Demidenko ZN; Blagosklonny MV
    Aging (Albany NY); 2009 Dec; 1(12):1008-16. PubMed ID: 20157583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of proliferating cells unmasks the shift from senescence to quiescence caused by rapamycin.
    Leontieva OV; Demidenko ZN; Gudkov AV; Blagosklonny MV
    PLoS One; 2011; 6(10):e26126. PubMed ID: 22022534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.
    Wang R; Yu Z; Sunchu B; Shoaf J; Dang I; Zhao S; Caples K; Bradley L; Beaver LM; Ho E; Löhr CV; Perez VI
    Aging Cell; 2017 Jun; 16(3):564-574. PubMed ID: 28371119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The power of chemotherapeutic engineering: arresting cell cycle and suppressing senescence to protect from mitotic inhibitors.
    Blagosklonny MV
    Cell Cycle; 2011 Jul; 10(14):2295-8. PubMed ID: 21715978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging-suppressants: cellular senescence (hyperactivation) and its pharmacologic deceleration.
    Blagosklonny MV
    Cell Cycle; 2009 Jun; 8(12):1883-7. PubMed ID: 19448395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacologic inhibition of MEK and PI-3K converges on the mTOR/S6 pathway to decelerate cellular senescence.
    Demidenko ZN; Shtutman M; Blagosklonny MV
    Cell Cycle; 2009 Jun; 8(12):1896-900. PubMed ID: 19478560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program).
    Leontieva OV; Demidenko ZN; Blagosklonny MV
    Oncotarget; 2015 Sep; 6(27):23238-48. PubMed ID: 26177051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyper-mitogenic drive coexists with mitotic incompetence in senescent cells.
    Leontieva OV; Lenzo F; Demidenko ZN; Blagosklonny MV
    Cell Cycle; 2012 Dec; 11(24):4642-9. PubMed ID: 23187803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence.
    Leontieva OV; Blagosklonny MV
    Aging (Albany NY); 2010 Dec; 2(12):924-35. PubMed ID: 21212465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia suppresses conversion from proliferative arrest to cellular senescence.
    Leontieva OV; Natarajan V; Demidenko ZN; Burdelya LG; Gudkov AV; Blagosklonny MV
    Proc Natl Acad Sci U S A; 2012 Aug; 109(33):13314-8. PubMed ID: 22847439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between mTOR pathway inhibition and autophagy induction attenuates adriamycin-induced vascular smooth muscle cell senescence through decreased expressions of p53/p21/p16.
    Sung JY; Lee KY; Kim JR; Choi HC
    Exp Gerontol; 2018 Aug; 109():51-58. PubMed ID: 28797827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudo-DNA damage response in senescent cells.
    Pospelova TV; Demidenko ZN; Bukreeva EI; Pospelov VA; Gudkov AV; Blagosklonny MV
    Cell Cycle; 2009 Dec; 8(24):4112-8. PubMed ID: 19946210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-trans retinoic acid induces cellular senescence via upregulation of p16, p21, and p27.
    Park SH; Lim JS; Jang KL
    Cancer Lett; 2011 Nov; 310(2):232-9. PubMed ID: 21803488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.