These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19471266)

  • 1. Beyond cochlear implants: awakening the deafened brain.
    Moore DR; Shannon RV
    Nat Neurosci; 2009 Jun; 12(6):686-91. PubMed ID: 19471266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory Performance and Electrical Stimulation Measures in Cochlear Implant Recipients With Auditory Neuropathy Compared With Severe to Profound Sensorineural Hearing Loss.
    Attias J; Greenstein T; Peled M; Ulanovski D; Wohlgelernter J; Raveh E
    Ear Hear; 2017; 38(2):184-193. PubMed ID: 28225734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focus on hearing.
    Narain C
    Nat Neurosci; 2009 Jun; 12(6):677. PubMed ID: 19471264
    [No Abstract]   [Full Text] [Related]  

  • 4. Cochlear implants and brain plasticity.
    Fallon JB; Irvine DR; Shepherd RK
    Hear Res; 2008 Apr; 238(1-2):110-7. PubMed ID: 17910997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effectiveness and cost-effectiveness of cochlear implants for severe to profound deafness in children and adults: a systematic review and economic model.
    Bond M; Mealing S; Anderson R; Elston J; Weiner G; Taylor RS; Hoyle M; Liu Z; Price A; Stein K
    Health Technol Assess; 2009 Sep; 13(44):1-330. PubMed ID: 19799825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech-processing strategies designed for children.
    Loeb GE
    Otolaryngol Head Neck Surg; 1997 Sep; 117(3 Pt 1):170-3. PubMed ID: 9334761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trimodal speech perception: how residual acoustic hearing supplements cochlear-implant consonant recognition in the presence of visual cues.
    Sheffield BM; Schuchman G; Bernstein JG
    Ear Hear; 2015; 36(3):e99-112. PubMed ID: 25514796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use it or lose it? Lessons learned from the developing brains of children who are deaf and use cochlear implants to hear.
    Gordon KA; Wong DD; Valero J; Jewell SF; Yoo P; Papsin BC
    Brain Topogr; 2011 Oct; 24(3-4):204-19. PubMed ID: 21479928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-band activity in auditory pathways reflects speech localization and recognition in bilateral cochlear implant users.
    Senkowski D; Pomper U; Fitzner I; Engel AK; Kral A
    Hum Brain Mapp; 2014 Jul; 35(7):3107-21. PubMed ID: 24123535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What is the optimal timing for bilateral cochlear implantation in children?
    Gordon KA; Jiwani S; Papsin BC
    Cochlear Implants Int; 2011 Aug; 12 Suppl 2():S8-14. PubMed ID: 21917210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical reorganization in postlingually deaf cochlear implant users: Intra-modal and cross-modal considerations.
    Stropahl M; Chen LC; Debener S
    Hear Res; 2017 Jan; 343():128-137. PubMed ID: 27473503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech perception and cortical auditory evoked potentials in cochlear implant users with auditory neuropathy spectrum disorders.
    Alvarenga KF; Amorim RB; Agostinho-Pesse RS; Costa OA; Nascimento LT; Bevilacqua MC
    Int J Pediatr Otorhinolaryngol; 2012 Sep; 76(9):1332-8. PubMed ID: 22796193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation of the midbrain for hearing restoration: insight into the functional organization of the human central auditory system.
    Lim HH; Lenarz T; Joseph G; Battmer RD; Samii A; Samii M; Patrick JF; Lenarz M
    J Neurosci; 2007 Dec; 27(49):13541-51. PubMed ID: 18057212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of developmental plasticity for the language acquisition of deaf children with cochlear implants.
    Robinson K
    Int J Pediatr Otorhinolaryngol; 1998 Nov; 46(1-2):71-80. PubMed ID: 10190707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the cochlear nucleus with multichannel auditory brainstem implants and long-term results: Freiburg patients.
    Marangos N; Stecker M; Sollmann WP; Laszig R
    J Laryngol Otol Suppl; 2000; (27):27-31. PubMed ID: 11211433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of electrophysiological and behavioural measures of electrode discrimination in adult cochlear implant users.
    Mathew R; Vickers D; Boyle P; Shaida A; Selvadurai D; Jiang D; Undurraga J
    Hear Res; 2018 Sep; 367():74-87. PubMed ID: 30031354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss.
    Shepherd RK; Coco A; Epp SB; Crook JM
    J Comp Neurol; 2005 May; 486(2):145-58. PubMed ID: 15844207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of central nervous system residua on cochlear implant results in children deafened by meningitis.
    Francis HW; Pulsifer MB; Chinnici J; Nutt R; Venick HS; Yeagle JD; Niparko JK
    Arch Otolaryngol Head Neck Surg; 2004 May; 130(5):604-11. PubMed ID: 15148184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Music perception with cochlear implants: a review.
    McDermott HJ
    Trends Amplif; 2004; 8(2):49-82. PubMed ID: 15497033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.