These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 19471372)

  • 1. Optical devices based on liquid crystal photonic bandgap fibres.
    Larsen T; Bjarklev A; Hermann D; Broeng J
    Opt Express; 2003 Oct; 11(20):2589-96. PubMed ID: 19471372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers.
    Alkeskjold T; Lægsgaard J; Bjarklev A; Hermann D; Anawati A; Broeng J; Li J; Wu ST
    Opt Express; 2004 Nov; 12(24):5857-71. PubMed ID: 19488225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infiltrated Photonic Crystal Fibers for Sensing Applications.
    Algorri JF; Zografopoulos DC; Tapetado A; Poudereux D; Sánchez-Pena JM
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30518084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switching intense laser pulses guided by Kerr-effect-modified modes of a hollow-core photonic-crystal fiber.
    Zheltikova DA; Scalora M; Zheltikov AM; Bloemer MJ; Shneider MN; D'Aguanno G; Miles RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026609. PubMed ID: 15783443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement.
    Kuo SM; Huang YW; Yeh SM; Cheng WH; Lin CH
    Opt Express; 2011 Sep; 19(19):18372-9. PubMed ID: 21935205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses.
    Konidakis I; Pissadakis S
    Materials (Basel); 2014 Aug; 7(8):5735-5745. PubMed ID: 28788157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect.
    Barkou SE; Broeng J; Bjarklev A
    Opt Lett; 1999 Jan; 24(1):46-8. PubMed ID: 18071403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectively liquid-filled photonic crystal fibers for optical devices.
    Yu CP; Liou JH
    Opt Express; 2009 May; 17(11):8729-34. PubMed ID: 19466121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber.
    Peng Y; Hou J; Zhang Y; Huang Z; Xiao R; Lu Q
    Opt Lett; 2013 Feb; 38(3):263-5. PubMed ID: 23381405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals.
    Ertman S; Wolinski TR; Pysz D; Buczynski R; Nowinowski-Kruszelnicki E; Dabrowski R
    Opt Express; 2009 Oct; 17(21):19298-310. PubMed ID: 20372666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloroform-infiltrated photonic crystal fiber with high-temperature sensitivity.
    Wang Y; Zhou J; Luo Z; Ling C; Li Z; Fan L; Zhao H; Yan Y
    Opt Express; 2023 Apr; 31(8):13279-13290. PubMed ID: 37157468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design.
    Yan M; Shum P
    Opt Lett; 2005 Aug; 30(15):1920-2. PubMed ID: 16092219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications.
    Park J; Kang DE; Paulson B; Nazari T; Oh K
    Opt Express; 2014 Jul; 22(14):17320-30. PubMed ID: 25090545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications.
    Wang Y; Tan X; Jin W; Ying D; Hoo YL; Liu S
    Opt Lett; 2010 Jan; 35(1):88-90. PubMed ID: 20664682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber.
    Konidakis I; Zito G; Pissadakis S
    Opt Lett; 2012 Jul; 37(13):2499-501. PubMed ID: 22743434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription.
    Baghdasaryan T; Geernaert T; Berghmans F; Thienpont H
    Opt Express; 2011 Apr; 19(8):7705-16. PubMed ID: 21503080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber.
    Alkeskjold TT; Laegsgaard J; Bjarklev A; Hermann DS; Broeng J; Li J; Gauza S; Wu ST
    Appl Opt; 2006 Apr; 45(10):2261-4. PubMed ID: 16607993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications.
    Cordeiro CM; Dos Santos EM; Brito Cruz CH; de Matos CJ; Ferreiira DS
    Opt Express; 2006 Sep; 14(18):8403-12. PubMed ID: 19529217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices.
    Weirich J; Laegsgaard J; Wei L; Alkeskjold TT; Wu TX; Wu ST; Bjarklev A
    Opt Express; 2010 Mar; 18(5):4074-87. PubMed ID: 20389422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for realizing photonic crystal fiber bandpass filters.
    Varshney SK; Saitoh K; Saitoh N; Tsuchida Y; Koshiba M; Sinha RK
    Opt Express; 2008 Jun; 16(13):9459-67. PubMed ID: 18575511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.