These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19471441)

  • 1. Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials.
    Challener W; Sendur I; Peng C
    Opt Express; 2003 Nov; 11(23):3160-70. PubMed ID: 19471441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of Bessel beam sources in FDTD.
    Wu Z; Han Y; Wang J; Cui Z
    Opt Express; 2018 Oct; 26(22):28727-28737. PubMed ID: 30470045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of spherical nanoparticles with a highly focused beam of light.
    Sendur K; Challener W; Mryasov O
    Opt Express; 2008 Mar; 16(5):2874-86. PubMed ID: 18542372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave propagation in media having negative permittivity and permeability.
    Ziolkowski RW; Heyman E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056625. PubMed ID: 11736134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic scattering by a buried sphere in a lossy medium of an inhomogeneous plane wave at arbitrary incidence: spectral-domain method.
    Frezza F; Mangini F
    J Opt Soc Am A Opt Image Sci Vis; 2016 May; 33(5):947-53. PubMed ID: 27140892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integral equation based numerical solution for nanoparticles illuminated with collimated and focused light.
    Sendur K
    Opt Express; 2009 Apr; 17(9):7419-30. PubMed ID: 19399120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique.
    Lermé J; Bachelier G; Billaud P; Bonnet C; Broyer M; Cottancin E; Marhaba S; Pellarin M
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):493-514. PubMed ID: 18246184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FDTD scattered field formulation for scatterers in stratified dispersive media.
    Olkkonen J
    Opt Express; 2010 Mar; 18(5):4380-9. PubMed ID: 20389450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-difference-time-domain analysis of finite-number-of-periods holographic and surface-relief gratings.
    Papadopoulos AD; Glytsis EN
    Appl Opt; 2008 Apr; 47(12):1981-94. PubMed ID: 18425170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mie scattering by a uniaxial anisotropic sphere.
    Geng YL; Wu XB; Li LW; Guan BR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056609. PubMed ID: 15600781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium.
    Sun W; Loeb NG; Fu Q
    Appl Opt; 2002 Sep; 41(27):5728-43. PubMed ID: 12269573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of nondiffracting Bessel beam sources in FDTD for scattering by complex particles.
    Chen A; Wang J; Han Y; Cui Z; Yu M
    Opt Express; 2018 Oct; 26(20):26766-26775. PubMed ID: 30469757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A compact source condition for modelling focused fields using the pseudospectral time-domain method.
    Munro PR; Engelke D; Sampson DD
    Opt Express; 2014 Mar; 22(5):5599-613. PubMed ID: 24663901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic scattering by an aggregate of spheres.
    Xu YL
    Appl Opt; 1995 Jul; 34(21):4573-88. PubMed ID: 21052290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body-of-revolution finite-difference time-domain for rigorous analysis of three-dimensional axisymmetric transformation optics lenses.
    Wang X; Wu Q; Turpin JP; Werner DH
    Opt Lett; 2013 Jan; 38(1):67-9. PubMed ID: 23282840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scattering by a dense layer of infinite cylinders at normal incidence.
    Lee SC
    J Opt Soc Am A Opt Image Sci Vis; 2008 May; 25(5):1022-9. PubMed ID: 18451908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid.
    Xu F; Ren K; Gouesbet G; Gréhan G; Cai X
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):119-31. PubMed ID: 17164850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions.
    Moreira WL; Neves AA; Garbos MK; Euser TG; Cesar CL
    Opt Express; 2016 Feb; 24(3):2370-82. PubMed ID: 26906812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mie scattering of magnetic spheres.
    Tarento RJ; Bennemann KH; Joyes P; Van de Walle J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026606. PubMed ID: 14995579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.