These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19472026)

  • 1. Cerebellar contributions to the processing of saccadic errors.
    van Broekhoven PC; Schraa-Tam CK; van der Lugt A; Smits M; Frens MA; van der Geest JN
    Cerebellum; 2009 Sep; 8(3):403-15. PubMed ID: 19472026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebellar activation related to saccadic inaccuracies.
    Liem EI; Frens MA; Smits M; van der Geest JN
    Cerebellum; 2013 Apr; 12(2):224-35. PubMed ID: 23055081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of Purkinje cells in evoking saccadic eye movements by microstimulation of the posterior cerebellar vermis of monkeys.
    Noda H; Fujikado T
    J Neurophysiol; 1987 May; 57(5):1247-61. PubMed ID: 3585467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellar control of saccadic eye movements: its neural mechanisms and pathways.
    Noda H
    Jpn J Physiol; 1991; 41(3):351-68. PubMed ID: 1960885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study.
    Nitschke MF; Binkofski F; Buccino G; Posse S; Erdmann C; Kömpf D; Seitz RJ; Heide W
    Hum Brain Mapp; 2004 Jun; 22(2):155-64. PubMed ID: 15108303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study.
    Hayakawa Y; Nakajima T; Takagi M; Fukuhara N; Abe H
    Ophthalmologica; 2002; 216(6):399-405. PubMed ID: 12566881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional adaptation of reactive saccades in humans: a PET study.
    Desmurget M; Pélisson D; Grethe JS; Alexander GE; Urquizar C; Prablanc C; Grafton ST
    Exp Brain Res; 2000 May; 132(2):243-59. PubMed ID: 10853949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey.
    Ohtsuka K; Noda H
    J Neurophysiol; 1995 Nov; 74(5):1828-40. PubMed ID: 8592177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccadic eye movements evoked by microstimulation of lobule VII of the cerebellar vermis of macaque monkeys.
    Fujikado T; Noda H
    J Physiol; 1987 Dec; 394():573-94. PubMed ID: 3443975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans.
    Jenkinson N; Miall RC
    Cerebellum; 2010 Dec; 9(4):548-55. PubMed ID: 20665254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in cortical activation during smooth pursuit and saccadic eye movements following cerebellar lesions.
    Baumann O; Ziemus B; Luerding R; Schuierer G; Bogdahn U; Greenlee MW
    Exp Brain Res; 2007 Aug; 181(2):237-47. PubMed ID: 17372726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural substrates of saccadic adaptation: Plastic changes versus error processing and forward versus backward learning.
    Métais C; Nicolas J; Diarra M; Cheviet A; Koun E; Pélisson D
    Neuroimage; 2022 Nov; 262():119556. PubMed ID: 35964865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation.
    Noda H; Fujikado T
    J Neurophysiol; 1987 Aug; 58(2):359-78. PubMed ID: 3655873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical and cerebellar activation induced by reflexive and voluntary saccades.
    Schraa-Tam CK; van Broekhoven P; van der Geest JN; Frens MA; Smits M; van der Lugt A
    Exp Brain Res; 2009 Jan; 192(2):175-87. PubMed ID: 18797855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the oculomotor vermis in the control of saccadic eye movements.
    Thier P; Dicke PW; Haas R; Thielert CD; Catz N
    Ann N Y Acad Sci; 2002 Dec; 978():50-62. PubMed ID: 12582041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades.
    Soetedjo R; Fuchs AF
    J Neurosci; 2006 Jul; 26(29):7741-55. PubMed ID: 16855102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in saccade dynamics between spinocerebellar ataxia 2 and late-onset cerebellar ataxias.
    Federighi P; Cevenini G; Dotti MT; Rosini F; Pretegiani E; Federico A; Rufa A
    Brain; 2011 Mar; 134(Pt 3):879-91. PubMed ID: 21354979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus-Specific Visual Working Memory Representations in Human Cerebellar Lobule VIIb/VIIIa.
    Brissenden JA; Tobyne SM; Halko MA; Somers DC
    J Neurosci; 2021 Feb; 41(5):1033-1045. PubMed ID: 33214320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography of saccadic eye movements evoked by microstimulation in rabbit cerebellar vermis.
    Godschalk M; Van der Burg J; Van Duin B; De Zeeuw CI
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):147-53. PubMed ID: 7853218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar vermis involvement in monkey saccadic eye movements: microstimulation.
    McElligott JG; Keller EL
    Exp Neurol; 1984 Dec; 86(3):543-58. PubMed ID: 6499993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.