These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 19472062)
1. A comparison of the growth of Scots pine (Pinus sylvestris L.) in a reclaimed oil shale post-mining area and in a Calluna site in Estonia. Kuznetsova T; Mandre M; Klõseiko J; Pärn H Environ Monit Assess; 2010 Jul; 166(1-4):257-65. PubMed ID: 19472062 [TBL] [Abstract][Full Text] [Related]
2. Scots pine needles macronutrient (N, P, K, CA, MG, and S) supply at different reclaimed mine soil substrates--as an indicator of the stability of developed forest ecosystems. Pietrzykowski M; Woś B; Haus N Environ Monit Assess; 2013 Sep; 185(9):7445-57. PubMed ID: 23404547 [TBL] [Abstract][Full Text] [Related]
3. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia. Kuznetsova T; Tilk M; Pärn H; Lukjanova A; Mandre M Environ Monit Assess; 2011 Dec; 183(1-4):341-50. PubMed ID: 21374054 [TBL] [Abstract][Full Text] [Related]
4. Effect of soil acidification on the growth of Korean pine (Pinus koraiensis) seedlings in a granite-derived forest soil. Choi DS; Jin HO; Lee CH; Kim YC; Kayama M Environ Sci; 2005; 12(1):33-47. PubMed ID: 15793559 [TBL] [Abstract][Full Text] [Related]
5. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968 [TBL] [Abstract][Full Text] [Related]
6. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil. Zhang J; George E Tree Physiol; 2009 Feb; 29(2):199-206. PubMed ID: 19203945 [TBL] [Abstract][Full Text] [Related]
7. Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land. Metslaid S; Stanturf JA; Hordo M; Korjus H; Laarmann D; Kiviste A Environ Sci Pollut Res Int; 2016 Jul; 23(14):13637-52. PubMed ID: 26573311 [TBL] [Abstract][Full Text] [Related]
8. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Pietrzykowski M; Socha J; van Doorn NS Sci Total Environ; 2014 Feb; 470-471():501-10. PubMed ID: 24176697 [TBL] [Abstract][Full Text] [Related]
9. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine. Nöjd P; Lindroos AJ; Smolander A; Derome J; Lumme I; Helmisaari HS Sci Total Environ; 2009 May; 407(10):3365-71. PubMed ID: 19269680 [TBL] [Abstract][Full Text] [Related]
10. Impact of emission from oil shale fueled power plants on the growth and foliar elemental concentrations of Scots pine in Estonia. Ots K Environ Monit Assess; 2003 Jul; 85(3):293-308. PubMed ID: 12841691 [TBL] [Abstract][Full Text] [Related]
11. Uranium distribution and cycling in Scots pine (Pinus sylvestris L.) growing on a revegetated U-mining heap. Thiry Y; Schmidt P; Van Hees M; Wannijn J; Van Bree P; Rufyikiri G; Vandenhove H J Environ Radioact; 2005; 81(2-3):201-19. PubMed ID: 15795035 [TBL] [Abstract][Full Text] [Related]
12. Long-term responses of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) to the contamination of light soils with diesel oil. Bęś A; Warmiński K; Adomas B Environ Sci Pollut Res Int; 2019 Apr; 26(11):10587-10608. PubMed ID: 30762180 [TBL] [Abstract][Full Text] [Related]
13. A lead isotopic assessment of tree bark as a biomonitor of contemporary atmospheric lead. Patrick GJ; Farmer JG Sci Total Environ; 2007 Dec; 388(1-3):343-56. PubMed ID: 17727921 [TBL] [Abstract][Full Text] [Related]
14. Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, nitrogen uptake, phosphorus uptake and growth of Pinus sylvestris seedlings. Schulz H; Schäfer T; Storbeck V; Härtling S; Rudloff R; Köck M; Buscot F Tree Physiol; 2012 Jan; 32(1):36-48. PubMed ID: 22184278 [TBL] [Abstract][Full Text] [Related]
15. Vertical gradients of mineral elements in Pinus sylvestris crown in alkalised soil. Mandre M Environ Monit Assess; 2009 Dec; 159(1-4):111-24. PubMed ID: 19015943 [TBL] [Abstract][Full Text] [Related]
16. Evolution of pH, organic matter and (226)radium/calcium partitioning in U-mining debris following revegetation with pine trees. Thiry Y; Van Hees M Sci Total Environ; 2008 Apr; 393(1):111-7. PubMed ID: 18207491 [TBL] [Abstract][Full Text] [Related]
17. Effects of clear-cutting and soil preparation on natural 15N abundance in the soil and needles of two boreal conifer tree species. Sah SP; Ilvesniemi H Isotopes Environ Health Stud; 2006 Dec; 42(4):367-77. PubMed ID: 17090488 [TBL] [Abstract][Full Text] [Related]
18. Monitoring of heavy metals uptake and allocation in Pinus sylvestris organs in alkalised soil. Mandre M; Ots K Environ Monit Assess; 2012 Jul; 184(7):4105-17. PubMed ID: 21805076 [TBL] [Abstract][Full Text] [Related]
19. Distribution and movement of nutrients and metals in a Pinus radiata forest soil following applications of biosolids. McLaren RG; Clucas LM; Speir TW; van Schaik AP Environ Pollut; 2007 May; 147(1):32-40. PubMed ID: 17045715 [TBL] [Abstract][Full Text] [Related]
20. Influence of solar UV radiation on the nitrogen metabolism in needles of Scots pine (Pinus sylvestris L.). Krywult M; Smykla J; Kinnunen H; Martz F; Sutinen ML; Lakkala K; Turunen M Environ Pollut; 2008 Dec; 156(3):1105-11. PubMed ID: 18508165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]