BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 19472196)

  • 1. Evaluation of polyanhydride microspheres for basal insulin delivery: Effect of copolymer composition and zinc salt on encapsulation, in vitro release, stability, in vivo absorption and bioactivity in diabetic rats.
    Manoharan C; Singh J
    J Pharm Sci; 2009 Nov; 98(11):4237-50. PubMed ID: 19472196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin loaded PLGA microspheres: effect of zinc salts on encapsulation, release, and stability.
    Manoharan C; Singh J
    J Pharm Sci; 2009 Feb; 98(2):529-42. PubMed ID: 18548615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery.
    Sheshala R; Peh KK; Darwis Y
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1364-74. PubMed ID: 19832637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alginate microspheres prepared by internal gelation: development and effect on insulin stability.
    Silva CM; Ribeiro AJ; Figueiredo IV; Gonçalves AR; Veiga F
    Int J Pharm; 2006 Mar; 311(1-2):1-10. PubMed ID: 16442757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of microsphere fabrication methods on the stability and release kinetics of ovalbumin encapsulated in polyanhydride microspheres.
    Determan AS; Graham JR; Pfeiffer KA; Narasimhan B
    J Microencapsul; 2006 Dec; 23(8):832-43. PubMed ID: 17390625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled delivery of basal insulin from phase-sensitive polymeric systems after subcutaneous administration: in vitro release, stability, biocompatibility, in vivo absorption, and bioactivity of insulin.
    Al-Tahami K; Oak M; Singh J
    J Pharm Sci; 2011 Jun; 100(6):2161-71. PubMed ID: 21491440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of poly (1, 6-bis-(p-carboxyphenoxy) hexane-co-sebacic acid microspheres for controlled basal insulin delivery.
    Manoharan C; Singh J
    Pharm Res; 2013 Mar; 30(3):627-40. PubMed ID: 22975807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and in vitro/in vivo evaluation of insulin-loaded poly(acryloyl-hydroxyethyl starch)-PLGA composite microspheres.
    Jiang G; Qiu W; DeLuca PP
    Pharm Res; 2003 Mar; 20(3):452-9. PubMed ID: 12669968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo evaluation of insulin microspheres containing protease inhibitor.
    Jelvehgari M; Milani PZ; Siahi-Shadbad MR; Monajjemzadeh F; Nokhodchi A; Azari Z; Valizadeh H
    Arzneimittelforschung; 2011; 61(1):14-22. PubMed ID: 21355442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles.
    Kumar PS; Ramakrishna S; Saini TR; Diwan PV
    Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition.
    Kwon YM; Kim SW
    Pharm Res; 2004 Feb; 21(2):339-43. PubMed ID: 15032317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel biodegradable and pH-sensitive poly(ester amide) microspheres for oral insulin delivery.
    He P; Tang Z; Lin L; Deng M; Pang X; Zhuang X; Chen X
    Macromol Biosci; 2012 Apr; 12(4):547-56. PubMed ID: 22362708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of polyanhydride for local BCNU delivery carriers.
    Kim MS; Seo KS; Seong HS; Cho SH; Lee HB; Hong KD; Kim SK; Khang G
    Biomed Mater Eng; 2005; 15(3):229-38. PubMed ID: 15912003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity.
    Reis CP; Ribeiro AJ; Houng S; Veiga F; Neufeld RJ
    Eur J Pharm Sci; 2007 Apr; 30(5):392-7. PubMed ID: 17280820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of glucagon-like peptide-1 loaded PLGA microspheres: characterizations, release studies and bioactivities in vitro/in vivo.
    Yin D; Lu Y; Zhang H; Zhang G; Zou H; Sun D; Zhong Y
    Chem Pharm Bull (Tokyo); 2008 Feb; 56(2):156-61. PubMed ID: 18239299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of protein-loaded polyanhydride microspheres.
    Sun L; Zhou S; Wang W; Su Q; Li X; Weng J
    J Mater Sci Mater Med; 2009 Oct; 20(10):2035-42. PubMed ID: 19424777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin.
    Zhang Y; Wei W; Lv P; Wang L; Ma G
    Eur J Pharm Biopharm; 2011 Jan; 77(1):11-9. PubMed ID: 20933083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.
    Ansary RH; Rahman MM; Awang MB; Katas H; Hadi H; Doolaanea AA
    Drug Deliv Transl Res; 2016 Jun; 6(3):308-18. PubMed ID: 26817478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres.
    Lopac SK; Torres MP; Wilson-Welder JH; Wannemuehler MJ; Narasimhan B
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):938-947. PubMed ID: 19642209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation, stabilization, and release of BSA-FITC from polyanhydride microspheres.
    Determan AS; Trewyn BG; Lin VS; Nilsen-Hamilton M; Narasimhan B
    J Control Release; 2004 Nov; 100(1):97-109. PubMed ID: 15491814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.