BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19472210)

  • 1. Molecular characterization of a human cation-Cl- cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport.
    Daigle ND; Carpentier GA; Frenette-Cotton R; Simard MG; Lefoll MH; Noël M; Caron L; Noël J; Isenring P
    J Cell Physiol; 2009 Sep; 220(3):680-9. PubMed ID: 19472210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters.
    Gamba G
    Physiol Rev; 2005 Apr; 85(2):423-93. PubMed ID: 15788703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the cation-chloride cotransporters in neurological disease.
    Kahle KT; Staley KJ; Nahed BV; Gamba G; Hebert SC; Lifton RP; Mount DB
    Nat Clin Pract Neurol; 2008 Sep; 4(9):490-503. PubMed ID: 18769373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular operation of the cation chloride cotransporters: ion binding and inhibitor interaction.
    Payne JA
    Curr Top Membr; 2012; 70():215-37. PubMed ID: 23177987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of polyamines in Drosophila S2 cells: kinetics, pharmacology and dependence on the plasma membrane proton gradient.
    Romero-Calderón R; Krantz DE
    Biochem J; 2006 Jan; 393(Pt 2):583-9. PubMed ID: 16248856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of the cation-chloride cotransporter family.
    Moore-Hoon ML; Turner RJ
    Eur J Morphol; 1998 Aug; 36 Suppl():137-41. PubMed ID: 9825909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of chloride transport in the control of the membrane potential in skeletal muscle--theory and experiment.
    Gallaher J; Bier M; Siegenbeek van Heukelom J
    Biophys Chem; 2009 Jul; 143(1-2):18-25. PubMed ID: 19361905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel insights regarding the operational characteristics and teleological purpose of the renal Na+-K+-Cl2 cotransporter (NKCC2s) splice variants.
    Brunet GM; Gagnon E; Simard CF; Daigle ND; Caron L; Noël M; Lefoll MH; Bergeron MJ; Isenring P
    J Gen Physiol; 2005 Oct; 126(4):325-37. PubMed ID: 16157691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and biochemical characterization of two cation chloride cotransporter subfamily members of Hydra vulgaris.
    Hartmann AM; Pisella LI; Medina I; Nothwang HG
    PLoS One; 2017; 12(6):e0179968. PubMed ID: 28662098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homooligomeric and heterooligomeric associations between K+-Cl- cotransporter isoforms and between K+-Cl- and Na+-K+-Cl- cotransporters.
    Simard CF; Bergeron MJ; Frenette-Cotton R; Carpentier GA; Pelchat ME; Caron L; Isenring P
    J Biol Chem; 2007 Jun; 282(25):18083-18093. PubMed ID: 17462999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family.
    Hebert SC; Mount DB; Gamba G
    Pflugers Arch; 2004 Feb; 447(5):580-93. PubMed ID: 12739168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid secondary transporters: toward a common transport mechanism.
    Schweikhard ES; Ziegler CM
    Curr Top Membr; 2012; 70():1-28. PubMed ID: 23177982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CIP1 is an activator of the K+-Cl- cotransporter KCC2.
    Wenz M; Hartmann AM; Friauf E; Nothwang HG
    Biochem Biophys Res Commun; 2009 Apr; 381(3):388-92. PubMed ID: 19232517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters.
    Giménez I
    Curr Opin Nephrol Hypertens; 2006 Sep; 15(5):517-23. PubMed ID: 16914965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport and ligand binding by the Na-K-Cl cotransporter, structure-function studies.
    Isenring P; Forbush B
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Oct; 130(3):487-97. PubMed ID: 11913460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of polyamine transporters in plants: paraquat transport provides crucial clues.
    Fujita M; Shinozaki K
    Plant Cell Physiol; 2014 May; 55(5):855-61. PubMed ID: 24590488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytomonas: transport of amino acids, hexoses and polyamines.
    Canepa GE; Carrillo C; Armesto AR; Bouvier LA; Miranda MR; Pereira CA
    Exp Parasitol; 2007 Sep; 117(1):106-10. PubMed ID: 17462632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular analysis of the Na(+)-independent cation chloride cotransporters.
    Gagnon KB; Di Fulvio M
    Cell Physiol Biochem; 2013; 32(7):14-31. PubMed ID: 24429812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional comparison of renal Na-K-Cl cotransporters between distant species.
    Gagnon E; Forbush B; Caron L; Isenring P
    Am J Physiol Cell Physiol; 2003 Feb; 284(2):C365-70. PubMed ID: 12388059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.