These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 19472642)
1. Quantitative comparison of delta P1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating. Elliott AM; Schwartz J; Wang J; Shetty AM; Bourgoyne C; O'Neal DP; Hazle JD; Stafford RJ Med Phys; 2009 Apr; 36(4):1351-8. PubMed ID: 19472642 [TBL] [Abstract][Full Text] [Related]
2. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment. Pustovalov V; Astafyeva L; Jean B Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875 [TBL] [Abstract][Full Text] [Related]
3. Potentials and pitfalls of gold-silica nanoshell as the exogenous contrast agent for optical diagnosis of cancers: a numerical parametric study. Xu X Lasers Med Sci; 2019 Apr; 34(3):615-628. PubMed ID: 30350124 [TBL] [Abstract][Full Text] [Related]
4. Optical absorption analysis and optimization of gold nanoshells. Tuersun P; Han X Appl Opt; 2013 Feb; 52(6):1325-9. PubMed ID: 23435006 [TBL] [Abstract][Full Text] [Related]
5. High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm. Falcão-Filho EL; Barbosa-Silva R; Sobral-Filho RG; Brito-Silva AM; Galembeck A; de Araújo CB Opt Express; 2010 Oct; 18(21):21636-44. PubMed ID: 20941062 [TBL] [Abstract][Full Text] [Related]
6. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: comment. Boulais E; Robitaille A; Desjeans-Gauthier P; Meunier M Opt Express; 2011 Mar; 19(7):6177-8; discussion 6179-81. PubMed ID: 21451642 [TBL] [Abstract][Full Text] [Related]
7. Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Cheong SK; Krishnan S; Cho SH Med Phys; 2009 Oct; 36(10):4664-71. PubMed ID: 19928098 [TBL] [Abstract][Full Text] [Related]
8. Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Elliott AM; Stafford RJ; Schwartz J; Wang J; Shetty AM; Bourgoyne C; O'Neal P; Hazle JD Med Phys; 2007 Jul; 34(7):3102-8. PubMed ID: 17822017 [TBL] [Abstract][Full Text] [Related]
9. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate. Harrison RK; Ben-Yakar A Opt Express; 2010 Oct; 18(21):22556-71. PubMed ID: 20941153 [TBL] [Abstract][Full Text] [Related]
10. Gold nanorod-facilitated localized heating of droplets in microfluidic chips. Li Z; Wang P; Tong L; Zhang L Opt Express; 2013 Jan; 21(1):1281-6. PubMed ID: 23389021 [TBL] [Abstract][Full Text] [Related]
11. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells. Phadnis A; Kumar S; Srivastava A J Therm Biol; 2016 Oct; 61():16-28. PubMed ID: 27712656 [TBL] [Abstract][Full Text] [Related]
13. Nanoshell-enabled photonics-based imaging and therapy of cancer. Loo C; Lin A; Hirsch L; Lee MH; Barton J; Halas N; West J; Drezek R Technol Cancer Res Treat; 2004 Feb; 3(1):33-40. PubMed ID: 14750891 [TBL] [Abstract][Full Text] [Related]
14. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. Kuznetsov AI; Kiyan R; Chichkov BN Opt Express; 2010 Sep; 18(20):21198-203. PubMed ID: 20941016 [TBL] [Abstract][Full Text] [Related]
15. Analytical solution to heat equation with magnetic resonance experimental verification for nanoshell enhanced thermal therapy. Elliott A; Schwartz J; Wang J; Shetty A; Hazle J; Stafford JR Lasers Surg Med; 2008 Nov; 40(9):660-5. PubMed ID: 18951423 [TBL] [Abstract][Full Text] [Related]
16. Probing deep tissues with laser-induced thermotherapy using near-infrared light. Lopes A; Gomes R; Castiñeras M; Coelho JMP; Santos JP; Vieira P Lasers Med Sci; 2020 Feb; 35(1):43-49. PubMed ID: 31098938 [TBL] [Abstract][Full Text] [Related]
17. Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon. Rodríguez-Cantó PJ; Martínez-Marco M; Rodríguez-Fortuño FJ; Tomás-Navarro B; Ortuño R; Peransí-Llopis S; Martínez A Opt Express; 2011 Apr; 19(8):7664-72. PubMed ID: 21503075 [TBL] [Abstract][Full Text] [Related]
18. Noncontact sub-10 nm temperature measurement in near-field laser heating. Yue Y; Chen X; Wang X ACS Nano; 2011 Jun; 5(6):4466-75. PubMed ID: 21557563 [TBL] [Abstract][Full Text] [Related]
19. Nanoscale subsurface- and material-specific identification of single nanoparticles. Nuño Z; Hessler B; Ochoa J; Shon YS; Bonney C; Abate Y Opt Express; 2011 Oct; 19(21):20865-75. PubMed ID: 21997096 [TBL] [Abstract][Full Text] [Related]
20. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method. Reynoso FJ; Lee CD; Cheong SK; Cho SH Med Phys; 2013 Jul; 40(7):073301. PubMed ID: 23822455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]