These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19472642)

  • 21. High precision and continuous optical transport using a standing wave optical line trap.
    Demergis V; Florin EL
    Opt Express; 2011 Oct; 19(21):20833-48. PubMed ID: 21997093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat transfer simulation.
    MacLellan CJ; Fuentes D; Elliott AM; Schwartz J; Hazle JD; Stafford RJ
    Int J Hyperthermia; 2014 Feb; 30(1):47-55. PubMed ID: 24350668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles.
    Yakunin AN; Avetisyan YA; Tuchin VV
    J Biomed Opt; 2015 May; 20(5):051030. PubMed ID: 25629389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.
    Butet J; Bachelier G; Duboisset J; Bertorelle F; Russier-Antoine I; Jonin C; Benichou E; Brevet PF
    Opt Express; 2010 Oct; 18(21):22314-23. PubMed ID: 20941132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes.
    Kim KH; Husakou A; Herrmann J
    Opt Express; 2010 Mar; 18(7):7488-96. PubMed ID: 20389771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inside-out disruption of silica/gold core-shell nanoparticles by pulsed laser irradiation.
    Prasad V; Mikhailovsky A; Zasadzinski JA
    Langmuir; 2005 Aug; 21(16):7528-32. PubMed ID: 16042490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational study of photo-thermal ablation of large blood vessel embedded tumor using localized injection of gold nanoshells.
    Paul A; Paul A
    J Therm Biol; 2018 Dec; 78():329-342. PubMed ID: 30509655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmon excitation of supported gold nanoparticles can control molecular release from supramolecular systems.
    Marquez DT; Carrillo AI; Scaiano JC
    Langmuir; 2013 Aug; 29(33):10521-8. PubMed ID: 23924379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of size, concentration, and type of spherical gold nanoparticles on heat evolution following laser irradiation using tissue-simulating phantoms.
    Zakaria H; Abdelaziz WS; Youssef T
    Lasers Med Sci; 2016 May; 31(4):625-34. PubMed ID: 26861979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells.
    Ayala-Orozco C; Urban C; Knight MW; Urban AS; Neumann O; Bishnoi SW; Mukherjee S; Goodman AM; Charron H; Mitchell T; Shea M; Roy R; Nanda S; Schiff R; Halas NJ; Joshi A
    ACS Nano; 2014 Jun; 8(6):6372-81. PubMed ID: 24889266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of a quantum nanocrystal-gold nanoshell complex for near-infrared generated fluorescence and photothermal decay of luminescence.
    Lin AY; Young JK; Nixon AV; Drezek RA
    Nanoscale; 2014 Sep; 6(18):10701-9. PubMed ID: 25096858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Saturable absorption in composites doped with metal nanoparticles.
    Kim KH; Husakou A; Herrmann J
    Opt Express; 2010 Oct; 18(21):21918-25. PubMed ID: 20941091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imprinting the optical near field of microstructures with nanometer resolution.
    Kühler P; García de Abajo FJ; Solis J; Mosbacher M; Leiderer P; Afonso CN; Siegel J
    Small; 2009 Aug; 5(16):1825-9. PubMed ID: 19618427
    [No Abstract]   [Full Text] [Related]  

  • 35. Use of gold nanoshells to constrain and enhance laser thermal therapy of metastatic liver tumours.
    Elliott AM; Shetty AM; Wang J; Hazle JD; Jason Stafford R
    Int J Hyperthermia; 2010; 26(5):434-40. PubMed ID: 20597626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale heating of laser irradiated single gold nanoparticles in liquid.
    Honda M; Saito Y; Smith NI; Fujita K; Kawata S
    Opt Express; 2011 Jun; 19(13):12375-83. PubMed ID: 21716475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser.
    Boutopoulos C; Hatef A; Fortin-Deschênes M; Meunier M
    Nanoscale; 2015 Jul; 7(27):11758-65. PubMed ID: 26104482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles.
    Hleb EY; Hafner JH; Myers JN; Hanna EY; Rostro BC; Zhdanok SA; Lapotko DO
    Nanomedicine (Lond); 2008 Oct; 3(5):647-67. PubMed ID: 18817468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.
    Bardhan R; Grady NK; Ali T; Halas NJ
    ACS Nano; 2010 Oct; 4(10):6169-79. PubMed ID: 20860401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the size distribution of metallic nanoparticles by optical extinction spectroscopy.
    Peña O; Rodríguez-Fernández L; Rodríguez-Iglesias V; Kellermann G; Crespo-Sosa A; Cheang-Wong JC; Silva-Pereyra HG; Arenas-Alatorre J; Oliver A
    Appl Opt; 2009 Jan; 48(3):566-72. PubMed ID: 19151826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.