These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19472642)

  • 41. Evaluation of theranostic perspective of gold-silica nanoshell for cancer nano-medicine: a numerical parametric study.
    Xu X; Bayazitoglu Y; Meade A
    Lasers Med Sci; 2019 Mar; 34(2):377-388. PubMed ID: 30215184
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photothermal bubbles as optical scattering probes for imaging living cells.
    Hleb EY; Hu Y; Drezek RA; Hafner JH; Lapotko DO
    Nanomedicine (Lond); 2008 Dec; 3(6):797-812. PubMed ID: 19025454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A modular implementation of dispersive materials for time-domain simulations with application to gold nanospheres at optical frequencies.
    Baumann D; Fumeaux C; Hafner C; Li EP
    Opt Express; 2009 Aug; 17(17):15186-200. PubMed ID: 19687997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro self-assembly of gold nanoparticle-coated poly(3-hydroxybutyrate) granules exhibiting plasmon-induced thermo-optical enhancements.
    Rey DA; Strickland AD; Kirui D; Niamsiri N; Batt CA
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1804-10. PubMed ID: 20565131
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Energy absorption of gold nanoshells in hyperthermia therapy.
    Liu C; Mi CC; Li BQ
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):206-14. PubMed ID: 18779101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation and experimental results of optical and thermal modeling of gold nanoshells.
    Ghazanfari L; Khosroshahi ME
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():185-91. PubMed ID: 25063109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles.
    Hua Y; Chandra K; Dam DH; Wiederrecht GP; Odom TW
    J Phys Chem Lett; 2015 Dec; 6(24):4904-8. PubMed ID: 26595327
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resonant mode coupling of optical resonances in stacked nanostructures.
    Gippius NA; Weiss T; Tikhodeev SG; Giessen H
    Opt Express; 2010 Mar; 18(7):7569-74. PubMed ID: 20389778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions.
    Richardson HH; Carlson MT; Tandler PJ; Hernandez P; Govorov AO
    Nano Lett; 2009 Mar; 9(3):1139-46. PubMed ID: 19193041
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications.
    Urries I; Muñoz C; Gomez L; Marquina C; Sebastian V; Arruebo M; Santamaria J
    Nanoscale; 2014 Aug; 6(15):9230-40. PubMed ID: 24980122
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical and electrical properties of Au nanoparticles in two-dimensional networks:an effective cluster model.
    Su H; Li Y; Li XY; Wong KS
    Opt Express; 2009 Nov; 17(24):22223-34. PubMed ID: 19997469
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2).
    Laurence TA; Bude JD; Ly S; Shen N; Feit MD
    Opt Express; 2012 May; 20(10):11561-73. PubMed ID: 22565775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal nanoshells.
    Hirsch LR; Gobin AM; Lowery AR; Tam F; Drezek RA; Halas NJ; West JL
    Ann Biomed Eng; 2006 Jan; 34(1):15-22. PubMed ID: 16528617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.
    Hirsch LR; Stafford RJ; Bankson JA; Sershen SR; Rivera B; Price RE; Hazle JD; Halas NJ; West JL
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13549-54. PubMed ID: 14597719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analytical prediction of sub-surface thermal history in translucent tissue phantoms during plasmonic photo-thermotherapy (PPTT).
    Dhar P; Paul A; Narasimhan A; Das SK
    J Therm Biol; 2016 Dec; 62(Pt B):143-149. PubMed ID: 27888928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of the thermal stability of 2-D patterns of Au nanoparticles.
    Shih TY; Requicha AA; Thompson ME; Koel BE
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2863-9. PubMed ID: 17685308
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles.
    Yashchenok A; Masic A; Gorin D; Inozemtseva O; Shim BS; Kotov N; Skirtach A; Möhwald H
    Small; 2015 Mar; 11(11):1320-7. PubMed ID: 25367373
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting.
    Nishijima Y; Rosa L; Juodkazis S
    Opt Express; 2012 May; 20(10):11466-77. PubMed ID: 22565766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.