These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 19473143)

  • 21. Influence of radial clearance and rotor motion to hemolysis in a journal bearing of a centrifugal blood pump.
    Kataoka H; Kimura Y; Fujita H; Takatani S
    Artif Organs; 2006 Nov; 30(11):841-54. PubMed ID: 17062107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of secondary flow in centrifugal blood pumps using a flow visualization method with a high-speed video camera.
    Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1996 Jun; 20(6):541-5. PubMed ID: 8817952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational fluid dynamics of gap flow in a biocentrifugal blood pump.
    Chua LP; Song G; Yu SC; Lim TM
    Artif Organs; 2005 Aug; 29(8):620-8. PubMed ID: 16048478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.
    Watanabe N; Masuda T; Iida T; Kataoka H; Fujimoto T; Takatani S
    Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A two stage axial flow pump. New approach to reduction of hemolysis.
    Wakisaka Y; Nakatani T; Anai H; Araki K; Taenaka Y; Tatsumi E; Masuzawa T; Baba Y; Eya K; Toda K
    ASAIO J; 1995; 41(3):M584-7. PubMed ID: 8573872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.
    Wu J; Paden BE; Borovetz HS; Antaki JF
    Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical antithrombogenic properties by vibrational excitation of the impeller in a magnetically levitated centrifugal blood pump.
    Murashige T; Hijikata W
    Artif Organs; 2019 Sep; 43(9):849-859. PubMed ID: 31321785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a centrifugal pump with thick blades.
    Kim WG; Chung CH; Yang WS; Park YN; Kim HI; Kim HC; Kang SH
    Artif Organs; 2000 Feb; 24(2):160-4. PubMed ID: 10718771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The hemolytic characteristics of monopivot magnetic suspension blood pumps with washout holes.
    Maruyama O; Nishida M; Tsutsui T; Jikuya T; Yamane T
    Artif Organs; 2005 Apr; 29(4):345-8. PubMed ID: 15787632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the Baylor/NASA axial flow ventricular assist device: in vitro performance and systematic hemolysis test results.
    Mizuguchi K; Damm GA; Bozeman RJ; Akkerman JW; Aber GS; Svejkovsky PA; Bacak JW; Orime Y; Takatani S; Nosé Y
    Artif Organs; 1994 Jan; 18(1):32-43. PubMed ID: 8141655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices.
    Zhang T; Taskin ME; Fang HB; Pampori A; Jarvik R; Griffith BP; Wu ZJ
    Artif Organs; 2011 Dec; 35(12):1180-6. PubMed ID: 21810113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose depletion enhances sensitivity to shear stress-induced mechanical damage in red blood cells by rotary blood pumps.
    Sakota D; Sakamoto R; Yokoyama N; Kobayashi M; Takatani S
    Artif Organs; 2009 Sep; 33(9):733-9. PubMed ID: 19775265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental determination of dynamic characteristics of the VentrAssist implantable rotary blood pump.
    Chung MK; Zhang N; Tansley GD; Qian Y
    Artif Organs; 2004 Dec; 28(12):1089-94. PubMed ID: 15554937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump.
    Fang P; Du J; Yu S
    Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pivot wash in two impeller modes for the Baylor/Miwatec centrifugal blood pump.
    Yamane T; Kodama T; Nishida M; Maruyama O; Yamamoto Y; Shinohara T; Motomura T; Nosé Y
    Artif Organs; 2006 Jan; 30(1):70-3. PubMed ID: 16409400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel integrated rotor of axial blood flow pump designed with computational fluid dynamics.
    Zhang Y; Xue S; Gui XM; Sun HS; Zhang H; Zhu XD; Hu SS
    Artif Organs; 2007 Jul; 31(7):580-5. PubMed ID: 17584484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluid dynamic characteristics of the VentrAssist rotary blood pump.
    Tansley G; Vidakovic S; Reizes J
    Artif Organs; 2000 Jun; 24(6):483-7. PubMed ID: 10886070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.