BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 19473240)

  • 1. Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels.
    Ji H; Hougaard C; Herrik KF; Strøbaek D; Christophersen P; Shepard PD
    Eur J Neurosci; 2009 May; 29(9):1883-95. PubMed ID: 19473240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons.
    Strøbaek D; Hougaard C; Johansen TH; Sørensen US; Nielsen EØ; Nielsen KS; Taylor RD; Pedarzani P; Christophersen P
    Mol Pharmacol; 2006 Nov; 70(5):1771-82. PubMed ID: 16926279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo.
    Ji H; Shepard PD
    Neuroscience; 2006 Jun; 140(2):623-33. PubMed ID: 16564639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons.
    Wolfart J; Roeper J
    J Neurosci; 2002 May; 22(9):3404-13. PubMed ID: 11978817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological modulation of the gating properties of small conductance Ca2+-activated K+ channels alters the firing pattern of dopamine neurons in vivo.
    Herrik KF; Christophersen P; Shepard PD
    J Neurophysiol; 2010 Sep; 104(3):1726-35. PubMed ID: 20660424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons.
    Wolfart J; Neuhoff H; Franz O; Roeper J
    J Neurosci; 2001 May; 21(10):3443-56. PubMed ID: 11331374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of excitability in tonic firing substantia gelatinosa neurons of the spinal cord by small-conductance Ca(2+)-activated K(+) channels.
    Yang K
    Neuropharmacology; 2016 Jun; 105():15-24. PubMed ID: 26777279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional reduction of SK3-mediated currents precedes AMPA-receptor-mediated excitotoxicity in dopaminergic neurons.
    Benítez BA; Belálcazar HM; Anastasía A; Mamah DT; Zorumski CF; Mascó DH; Herrera DG; de Erausquin GA
    Neuropharmacology; 2011 Jun; 60(7-8):1176-86. PubMed ID: 21044638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of SK-type Ca2+-activated K+ channels uncovers a Ca2+-dependent slow afterdepolarization in nigral dopamine neurons.
    Ping HX; Shepard PD
    J Neurophysiol; 1999 Mar; 81(3):977-84. PubMed ID: 10085326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between calcium channels and SK channels in midbrain dopamine neurons and their impact on pacemaker regularity: Contrasting roles of N- and L-type channels.
    de Vrind V; Scuvée-Moreau J; Drion G; Hmaied C; Philippart F; Engel D; Seutin V
    Eur J Pharmacol; 2016 Oct; 788():274-279. PubMed ID: 27364758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of apamin-sensitive medium afterhyperpolarization current by anandamide and its role in excitability control in cultured hippocampal neurons.
    Wang W; Zhang K; Yan S; Li A; Hu X; Zhang L; Liu C
    Neuropharmacology; 2011 May; 60(6):901-9. PubMed ID: 21272594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Firing pattern modulation through SK channel current increase underlies neuronal survival in an organotypic slice model of Parkinson's disease.
    Wang Y; Qu L; Wang XL; Gao L; Li ZZ; Gao GD; Yang Q
    Mol Neurobiol; 2015 Feb; 51(1):424-36. PubMed ID: 24841382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro.
    Hallworth NE; Wilson CJ; Bevan MD
    J Neurosci; 2003 Aug; 23(20):7525-42. PubMed ID: 12930791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons.
    Putzier I; Kullmann PH; Horn JP; Levitan ES
    J Neurosci; 2009 Dec; 29(49):15414-9. PubMed ID: 20007466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol 1,4,5-triphosphate-evoked responses in midbrain dopamine neurons.
    Morikawa H; Imani F; Khodakhah K; Williams JT
    J Neurosci; 2000 Oct; 20(20):RC103. PubMed ID: 11027254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of the medium-duration afterhyperpolarization in rat serotonergic neurons.
    Alix P; Venkatesan K; Scuvée-Moreau J; Massotte L; Nguyen Trung ML; Cornil CA; Seutin V
    Eur J Neurosci; 2014 Jan; 39(2):186-96. PubMed ID: 24188044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels.
    Pedarzani P; Mosbacher J; Rivard A; Cingolani LA; Oliver D; Stocker M; Adelman JP; Fakler B
    J Biol Chem; 2001 Mar; 276(13):9762-9. PubMed ID: 11134030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata.
    Yanovsky Y; Zhang W; Misgeld U
    Neuroscience; 2005; 136(4):1027-36. PubMed ID: 16203104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of small conductance Ca²⁺-activated K⁺ channels in controlling CA1 pyramidal cell excitability.
    Chen S; Benninger F; Yaari Y
    J Neurosci; 2014 Jun; 34(24):8219-30. PubMed ID: 24920626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons.
    Deignan J; Luján R; Bond C; Riegel A; Watanabe M; Williams JT; Maylie J; Adelman JP
    Neuroscience; 2012 Aug; 217():67-76. PubMed ID: 22554781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.