BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19473248)

  • 1. Bioactivation of flavonoid diglycosides by chicken cecal bacteria.
    Iqbal MF; Zhu WY
    FEMS Microbiol Lett; 2009 Jun; 295(1):30-41. PubMed ID: 19473248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of newly isolated Lactobacillus delbrueckii-like strain MF-07 isolated from chicken and its role in isoflavone biotransformation.
    Iqbal MF; Zhu WY
    FEMS Microbiol Lett; 2009 Feb; 291(2):180-7. PubMed ID: 19146574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro fermentation of broiler cecal content: the role of lactobacilli and pH value on the composition of microbiota and end products fermentation.
    Meimandipour A; Shuhaimi M; Hair-Bejo M; Azhar K; Kabeir BM; Rasti B; Yazid AM
    Lett Appl Microbiol; 2009 Oct; 49(4):415-20. PubMed ID: 19725887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactobacillus taiwanensis sp. nov., isolated from silage.
    Wang LT; Kuo HP; Wu YC; Tai CJ; Lee FL
    Int J Syst Evol Microbiol; 2009 Aug; 59(Pt 8):2064-8. PubMed ID: 19605711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids.
    Labib S; Erb A; Kraus M; Wickert T; Richling E
    Mol Nutr Food Res; 2004 Sep; 48(4):326-32. PubMed ID: 15497184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCR monitoring of Lactobacillus and Bifidobacterium dynamics in fermentations by piglet intestinal microbiota.
    Moura P; Simões F; Gírio F; Loureiro-Dias MC; Esteves MP
    J Basic Microbiol; 2007 Apr; 47(2):148-57. PubMed ID: 17440917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing.
    Kovatcheva-Datchary P; Egert M; Maathuis A; Rajilić-Stojanović M; de Graaf AA; Smidt H; de Vos WM; Venema K
    Environ Microbiol; 2009 Apr; 11(4):914-26. PubMed ID: 19128319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactobacillus oeni sp. nov., from wine.
    Mañes-Lázaro R; Ferrer S; Rosselló-Mora R; Pardo I
    Int J Syst Evol Microbiol; 2009 Aug; 59(Pt 8):2010-4. PubMed ID: 19567555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and molecular comparison with dairy-related Lactobacillus helveticus strains.
    Jensen MP; Ardö Y; Vogensen FK
    Lett Appl Microbiol; 2009 Sep; 49(3):396-402. PubMed ID: 19627475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cation adduction on the separation characteristics of flavonoid diglycoside isomers using dual gate-ion mobility-quadrupole ion trap mass spectrometry.
    Clowers BH; Hill HH
    J Mass Spectrom; 2006 Mar; 41(3):339-51. PubMed ID: 16498610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactobacillus aquaticus sp. nov., isolated from a Korean freshwater pond.
    Mañes-Lázaro R; Song J; Pardo I; Cho JC; Ferrer S
    Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2215-8. PubMed ID: 19620384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactobacillus sucicola sp. nov., a motile lactic acid bacterium isolated from oak tree (Quercus sp.) sap.
    Irisawa T; Okada S
    Int J Syst Evol Microbiol; 2009 Nov; 59(Pt 11):2662-5. PubMed ID: 19625442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by Fluorescence in situ hybridization (FISH).
    Hein EM; Rose K; van't Slot G; Friedrich AW; Humpf HU
    J Agric Food Chem; 2008 Mar; 56(6):2281-90. PubMed ID: 18303842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation.
    Keppler K; Hein EM; Humpf HU
    Mol Nutr Food Res; 2006 Aug; 50(8):686-95. PubMed ID: 16835870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of biodiversity of lactic acid bacteria microbiota in the calf intestinal tracts.
    Busconi M; Reggi S; Fogher C
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):145-55. PubMed ID: 18189159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desulfoluna spongiiphila sp. nov., a dehalogenating bacterium in the Desulfobacteraceae from the marine sponge Aplysina aerophoba.
    Ahn YB; Kerkhof LJ; Häggblom MM
    Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2133-9. PubMed ID: 19605712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid beta-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria.
    Mazzaferro L; Piñuel L; Minig M; Breccia JD
    Arch Microbiol; 2010 May; 192(5):383-93. PubMed ID: 20358178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereospecific microbial production of isoflavanones from isoflavones and isoflavone glucosides.
    Park HY; Kim M; Han J
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1173-81. PubMed ID: 21562980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aliagarivorans marinus gen. nov., sp. nov. and Aliagarivorans taiwanensis sp. nov., facultatively anaerobic marine bacteria capable of agar degradation.
    Jean WD; Huang SP; Liu TY; Chen JS; Shieh WY
    Int J Syst Evol Microbiol; 2009 Aug; 59(Pt 8):1880-7. PubMed ID: 19567569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas chromatographic-mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives: analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits.
    Füzfai Z; Molnár-Perl I
    J Chromatogr A; 2007 May; 1149(1):88-101. PubMed ID: 17289064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.