BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 19473692)

  • 1. Ambient trace element background concentrations in soils and their use in risk assessment.
    Díez M; Simón M; Martín F; Dorronsoro C; García I; Van Gestel CA
    Sci Total Environ; 2009 Aug; 407(16):4622-32. PubMed ID: 19473692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimates of ambient background concentrations of trace metals in soils for risk assessment.
    Zhao FJ; McGrath SP; Merrington G
    Environ Pollut; 2007 Jul; 148(1):221-9. PubMed ID: 17223237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA).
    Yokel J; Delistraty DA
    Environ Toxicol; 2003 Apr; 18(2):104-14. PubMed ID: 12635098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contribution towards the risk assessment of soils from the São Domingos Mine (Portugal): chemical, microbial and ecotoxicological indicators.
    Alvarenga P; Palma P; de Varennes A; Cunha-Queda AC
    Environ Pollut; 2012 Feb; 161():50-6. PubMed ID: 22230067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain.
    Chopin EI; Alloway BJ
    Sci Total Environ; 2007 Feb; 373(2-3):488-500. PubMed ID: 17234255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils.
    Pueyo M; Mateu J; Rigol A; Vidal M; López-Sánchez JF; Rauret G
    Environ Pollut; 2008 Mar; 152(2):330-41. PubMed ID: 17655986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study.
    Domínguez MT; Marañón T; Murillo JM; Schulin R; Robinson BH
    Environ Pollut; 2008 Mar; 152(1):50-9. PubMed ID: 17602809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk.
    Moreno-Jiménez E; Beesley L; Lepp NW; Dickinson NM; Hartley W; Clemente R
    Environ Pollut; 2011 Oct; 159(10):3078-85. PubMed ID: 21570165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters.
    Vidic T; Lah B; Berden-Zrimec M; Marinsek-Logar R
    Environ Toxicol; 2009 Oct; 24(5):472-83. PubMed ID: 18973278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of bioassays by testing whole soil and their water extract from contaminated sites.
    Leitgib L; Kálmán J; Gruiz K
    Chemosphere; 2007 Jan; 66(3):428-34. PubMed ID: 16860849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Background arsenic concentrations in Southeastern Spanish soils.
    Díez M; Simón M; Dorronsoro C; García I; Martín F
    Sci Total Environ; 2007 May; 378(1-2):5-12. PubMed ID: 17307229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of nutritional status and trace element contamination of holm oak woodlands through analyses of leaves and surrounding soils.
    De Nicola F; Maisto G; Alfani A
    Sci Total Environ; 2003 Jul; 311(1-3):191-203. PubMed ID: 12826392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a general toxicity test to predict heavy metal concentrations in residential soils.
    Aelion CM; Davis HT
    Chemosphere; 2007 Mar; 67(5):1043-9. PubMed ID: 17140621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing long-term environmental risks of trace elements in phosphate fertilizers.
    Chen W; Chang AC; Wu L
    Ecotoxicol Environ Saf; 2007 May; 67(1):48-58. PubMed ID: 17296225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inventory of trace element inputs to agricultural soils in China.
    Luo L; Ma Y; Zhang S; Wei D; Zhu YG
    J Environ Manage; 2009 Jun; 90(8):2524-30. PubMed ID: 19246150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of an approach for the characterization of reactive and available pools of 20 potentially toxic elements in soils: part II--solid-solution partition relationships and ion activity in soil solutions.
    Rodrigues SM; Henriques B; Ferreira da Silva E; Pereira ME; Duarte AC; Groenenberg JE; Römkens PF
    Chemosphere; 2010 Dec; 81(11):1560-70. PubMed ID: 20947125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: part I--the role of key soil properties in the variation of contaminants' reactivity.
    Rodrigues SM; Henriques B; Ferreira da Silva E; Pereira ME; Duarte AC; Römkens PF
    Chemosphere; 2010 Dec; 81(11):1549-59. PubMed ID: 20705326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas.
    Kassaye YA; Skipperud L; Meland S; Dadebo E; Einset J; Salbu B
    J Environ Monit; 2012 Oct; 14(10):2698-709. PubMed ID: 22907177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste.
    Madejón P; Murillo JM; Marañón T; Lepp NW
    Chemosphere; 2007 Feb; 67(1):20-8. PubMed ID: 17123576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.