BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19473814)

  • 1. Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans.
    Fabijańska A
    Comput Med Imaging Graph; 2009 Oct; 33(7):537-46. PubMed ID: 19473814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals.
    Chaturvedi A; Lee Z
    Phys Med Biol; 2005 Apr; 50(7):1405-19. PubMed ID: 15798332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [3D region growing algorithm driven by morphological dilation for airway tree segmentation in image guided therapy].
    Wang L; Gao X; Zhang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):679-83, 691. PubMed ID: 24059036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Region growing algorithm combined with morphology and skeleton analysis for segmenting airway tree in CT images.
    Duan HH; Gong J; Sun XW; Nie SD
    J Xray Sci Technol; 2020; 28(2):311-331. PubMed ID: 32039883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
    Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology-controlled volume rendering.
    Weber GH; Dillard SE; Carr H; Pascucci V; Hamann B
    IEEE Trans Vis Comput Graph; 2007; 13(2):330-41. PubMed ID: 17218749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT-based geometry analysis and finite element models of the human and ovine bronchial tree.
    Tawhai MH; Hunter P; Tschirren J; Reinhardt J; McLennan G; Hoffman EA
    J Appl Physiol (1985); 2004 Dec; 97(6):2310-21. PubMed ID: 15322064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods of bronchial tree reconstruction and camera distortion corrections for virtual endoscopic environments.
    Socha M; Duplaga M; Turcza P
    Stud Health Technol Inform; 2004; 105():285-95. PubMed ID: 15718617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient interactive 3D Livewire segmentation of complex objects with arbitrary topology.
    Poon M; Hamarneh G; Abugharbieh R
    Comput Med Imaging Graph; 2008 Dec; 32(8):639-50. PubMed ID: 18722750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images.
    Aykac D; Hoffman EA; McLennan G; Reinhardt JM
    IEEE Trans Med Imaging; 2003 Aug; 22(8):940-50. PubMed ID: 12906248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate measurement of intrathoracic airways.
    Reinhardt JM; D'Souza ND; Hoffman EA
    IEEE Trans Med Imaging; 1997 Dec; 16(6):820-7. PubMed ID: 9533582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of airway diameter measurements from an anthropomorphic airway tree phantom using hyperpolarized 3He MRI and high-resolution computed tomography.
    Tzeng YS; Hoffman E; Cook-Granroth J; Maurer R; Shah N; Mansour J; Tschirren J; Albert M
    Magn Reson Med; 2007 Sep; 58(3):636-42. PubMed ID: 17763351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncontrast-enhanced three-dimensional magnetic resonance aortography of the thorax at 3.0 T using respiratory-compensated T1-weighted k-space segmented gradient-echo imaging with radial data sampling: preliminary study.
    Amano Y; Takahama K; Kumita S
    Invest Radiol; 2009 Sep; 44(9):548-52. PubMed ID: 19652612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of intra-abdominal and subcutaneous adipose tissue in 3D whole mouse MRI.
    Ranefall P; Bidar AW; Hockings PD
    J Magn Reson Imaging; 2009 Sep; 30(3):554-60. PubMed ID: 19711401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.
    Wei JD; Tsai MH; Lee GC; Huang JH; Lee DT
    IEEE Trans Vis Comput Graph; 2009; 15(2):234-48. PubMed ID: 19147888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of pulmonary airway tree structures.
    Palágyi K; Tschirren J; Hoffman EA; Sonka M
    Comput Biol Med; 2006 Sep; 36(9):974-96. PubMed ID: 16076463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised fully automated inline analysis of global left ventricular function in CINE MR imaging.
    Theisen D; Sandner TA; Bauner K; Hayes C; Rist C; Reiser MF; Wintersperger BJ
    Invest Radiol; 2009 Aug; 44(8):463-8. PubMed ID: 19561514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of pixel size on quantification of airway wall thickness in computed tomography.
    Achenbach T; Weinheimer O; Dueber C; Heussel CP
    J Comput Assist Tomogr; 2009; 33(5):725-30. PubMed ID: 19820501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D airway tree reconstruction in healthy subjects and emphysema.
    Salito C; Barazzetti L; Woods JC; Aliverti A
    Lung; 2011 Aug; 189(4):287-93. PubMed ID: 21688115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of pulmonary vascular tree by incorporating vessel enhancement filter and variational region-growing.
    Duan HH; Su GQ; Huang YC; Song LT; Nie SD
    J Xray Sci Technol; 2019; 27(2):343-360. PubMed ID: 30856156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.