These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 19473871)

  • 21. About plant species potentially promising for phytoextraction of large amounts of toxic trace elements.
    Shtangeeva I
    Environ Geochem Health; 2021 Apr; 43(4):1689-1701. PubMed ID: 32607703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils.
    Kidd P; Mench M; Álvarez-López V; Bert V; Dimitriou I; Friesl-Hanl W; Herzig R; Janssen JO; Kolbas A; Müller I; Neu S; Renella G; Ruttens A; Vangronsveld J; Puschenreiter M
    Int J Phytoremediation; 2015; 17(11):1005-37. PubMed ID: 25581041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prospecting for hyperaccumulators of trace elements: a review.
    Krzciuk K; Gałuszka A
    Crit Rev Biotechnol; 2015; 35(4):522-32. PubMed ID: 24938121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ecological aspects of plant selenium hyperaccumulation.
    El Mehdawi AF; Pilon-Smits EA
    Plant Biol (Stuttg); 2012 Jan; 14(1):1-10. PubMed ID: 22132825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.
    Liang HM; Lin TH; Chiou JM; Yeh KC
    Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials.
    Li JT; Liao B; Dai ZY; Zhu R; Shu WS
    Chemosphere; 2009 Aug; 76(9):1233-9. PubMed ID: 19541343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The phytoremediation potential of native plants on New Zealand dairy farms.
    Hahner JL; Robinson BH; Hong-Tao Z; Dickinson NM
    Int J Phytoremediation; 2014; 16(7-12):719-34. PubMed ID: 24933881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nickel: an overview of uptake, essentiality and toxicity in plants.
    Yusuf M; Fariduddin Q; Hayat S; Ahmad A
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):1-17. PubMed ID: 21170705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal-polluted sites: implications for phytoremediation.
    Pauwels M; Willems G; Roosens N; Frérot H; Saumitou-Laprade P
    Mol Ecol; 2008 Jan; 17(1):108-19. PubMed ID: 17784915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoremediation of organic contaminants in soil and groundwater.
    Reichenauer TG; Germida JJ
    ChemSusChem; 2008; 1(8-9):708-17. PubMed ID: 18698569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.
    Braud A; Jézéquel K; Bazot S; Lebeau T
    Chemosphere; 2009 Jan; 74(2):280-6. PubMed ID: 18945474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment.
    Peng S; Zhou Q; Cai Z; Zhang Z
    J Hazard Mater; 2009 Sep; 168(2-3):1490-6. PubMed ID: 19346069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the potential of biological treatment for arsenic contaminated soils and groundwater.
    Wang S; Zhao X
    J Environ Manage; 2009 Jun; 90(8):2367-76. PubMed ID: 19269736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil.
    Wang Y; Oyaizu H
    J Hazard Mater; 2009 Sep; 168(2-3):760-4. PubMed ID: 19321258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homing in on iron homeostasis in plants.
    Jeong J; Guerinot ML
    Trends Plant Sci; 2009 May; 14(5):280-5. PubMed ID: 19375375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How plants cope with cadmium: staking all on metabolism and gene expression.
    DalCorso G; Farinati S; Maistri S; Furini A
    J Integr Plant Biol; 2008 Oct; 50(10):1268-80. PubMed ID: 19017114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofortified crops to alleviate micronutrient malnutrition.
    Mayer JE; Pfeiffer WH; Beyer P
    Curr Opin Plant Biol; 2008 Apr; 11(2):166-70. PubMed ID: 18314378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytoextraction of metals and metalloids from contaminated soils.
    McGrath SP; Zhao FJ
    Curr Opin Biotechnol; 2003 Jun; 14(3):277-82. PubMed ID: 12849780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in development of transgenic plants for remediation of xenobiotic pollutants.
    Eapen S; Singh S; D'Souza SF
    Biotechnol Adv; 2007; 25(5):442-51. PubMed ID: 17553651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation and partitioning of biomass, nutrients, and trace elements in switchgrass for phytoremediation of municipal biosolids.
    Jeke NN; Zvomuya F; Ross L
    Int J Phytoremediation; 2016 Sep; 18(9):892-9. PubMed ID: 26940512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.