BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19474373)

  • 1. Can compression be reduced for breast tomosynthesis? Monte carlo study on mass and microcalcification conspicuity in tomosynthesis.
    Saunders RS; Samei E; Lo JY; Baker JA
    Radiology; 2009 Jun; 251(3):673-82. PubMed ID: 19474373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of breast compression on mass conspicuity in digital mammography.
    Saunders RS; Samei E
    Med Phys; 2008 Oct; 35(10):4464-73. PubMed ID: 18975694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.
    Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H
    Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Case for Wide-Angle Breast Tomosynthesis.
    Samei E; Thompson J; Richard S; Bowsher J
    Acad Radiol; 2015 Jul; 22(7):860-9. PubMed ID: 25920335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views.
    Chan HP; Goodsitt MM; Helvie MA; Zelakiewicz S; Schmitz A; Noroozian M; Paramagul C; Roubidoux MA; Nees AV; Neal CH; Carson P; Lu Y; Hadjiiski L; Wei J
    Radiology; 2014 Dec; 273(3):675-85. PubMed ID: 25007048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system.
    Rodrigues L; Magalhaes LA; Braz D
    Radiat Prot Dosimetry; 2015 Dec; 167(4):576-83. PubMed ID: 25480841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach.
    Sahiner B; Chan HP; Hadjiiski LM; Helvie MA; Wei J; Zhou C; Lu Y
    Med Phys; 2012 Jan; 39(1):28-39. PubMed ID: 22225272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of reconstruction algorithms for breast tomosynthesis.
    Wu T; Moore RH; Rafferty EA; Kopans DB
    Med Phys; 2004 Sep; 31(9):2636-47. PubMed ID: 15487747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis.
    Gong Z; Klanian K; Patel T; Sullivan O; Williams MB
    Med Phys; 2012 Dec; 39(12):7580-92. PubMed ID: 23231306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system.
    Schulz-Wendtland R; Wenkel E; Lell M; Böhner C; Bautz WA; Mertelmeier T
    Rofo; 2006 Dec; 178(12):1219-23. PubMed ID: 17136645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical experience of photon counting breast tomosynthesis: comparison with traditional mammography.
    Svane G; Azavedo E; Lindman K; Urech M; Nilsson J; Weber N; Lindqvist L; Ullberg C
    Acta Radiol; 2011 Mar; 52(2):134-42. PubMed ID: 21498340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threshold in breast compression reduction for full-field digital mammography and digital breast tomosynthesis.
    Afandy AN; Tori MB; Bintalib SO; Soh BLP
    Radiography (Lond); 2024 Jan; 30(1):217-225. PubMed ID: 38035436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study.
    Di Maria S; Baptista M; Felix M; Oliveira N; Matela N; Janeiro L; Vaz P; Orvalho L; Silva A
    Phys Med; 2014 Jun; 30(4):482-8. PubMed ID: 24613514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.
    Marques T; Ribeiro A; Di Maria S; Belchior A; Cardoso J; Matela N; Oliveira N; Janeiro L; Almeida P; Vaz P
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):337-41. PubMed ID: 25836692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of back projection methods for breast tomosynthesis image reconstruction.
    Zhou W; Lu J; Zhou O; Chen Y
    J Digit Imaging; 2015 Jun; 28(3):338-45. PubMed ID: 25384538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning denoising of digital breast tomosynthesis: Observer performance study of the effect on detection of microcalcifications in breast phantom images.
    Chan HP; Helvie MA; Gao M; Hadjiiski L; Zhou C; Garver K; Klein KA; McLaughlin C; Oudsema R; Rahman WT; Roubidoux MA
    Med Phys; 2023 Oct; 50(10):6177-6189. PubMed ID: 37145996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray scatter correction in breast tomosynthesis with a precomputed scatter map library.
    Feng SS; D'Orsi CJ; Newell MS; Seidel RL; Patel B; Sechopoulos I
    Med Phys; 2014 Mar; 41(3):031912. PubMed ID: 24593730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Monte Carlo-based model for simulation of digital chest tomosynthesis.
    Ullman G; Dance DR; Sandborg M; Carlsson GA; Svalkvist A; Båth M
    Radiat Prot Dosimetry; 2010; 139(1-3):159-63. PubMed ID: 20203125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.