These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 19474477)

  • 1. Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment.
    Prosperi MC; Altmann A; Rosen-Zvi M; Aharoni E; Borgulya G; Bazso F; Sönnerborg A; Schülter E; Struck D; Ulivi G; Vandamme AM; Vercauteren J; Zazzi M;
    Antivir Ther; 2009; 14(3):433-42. PubMed ID: 19474477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rules-based HIV-1 genotypic resistance interpretation systems predict 8 week and 24 week virological antiretroviral treatment outcome and benefit from drug potency weighting.
    Zazzi M; Prosperi M; Vicenti I; Di Giambenedetto S; Callegaro A; Bruzzone B; Baldanti F; Gonnelli A; Boeri E; Paolini E; Rusconi S; Giacometti A; Maggiolo F; Menzo S; De Luca A;
    J Antimicrob Chemother; 2009 Sep; 64(3):616-24. PubMed ID: 19620134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy.
    Wang D; Larder B; Revell A; Montaner J; Harrigan R; De Wolf F; Lange J; Wegner S; Ruiz L; Pérez-Elías MJ; Emery S; Gatell J; D'Arminio Monforte A; Torti C; Zazzi M; Lane C
    Artif Intell Med; 2009 Sep; 47(1):63-74. PubMed ID: 19524413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the response to combination antiretroviral therapy: retrospective validation of geno2pheno-THEO on a large clinical database.
    Altmann A; Däumer M; Beerenwinkel N; Peres Y; Schülter E; Büch J; Rhee SY; Sönnerborg A; Fessel WJ; Shafer RW; Zazzi M; Kaiser R; Lengauer T
    J Infect Dis; 2009 Apr; 199(7):999-1006. PubMed ID: 19239365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of an expert system to predict virological response to HIV therapy as part of an online treatment support tool.
    Revell AD; Wang D; Boyd MA; Emery S; Pozniak AL; De Wolf F; Harrigan R; Montaner JS; Lane C; Larder BA;
    AIDS; 2011 Sep; 25(15):1855-63. PubMed ID: 21785323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of artificial neural networks to predict virological response to combination HIV therapy.
    Larder B; Wang D; Revell A; Montaner J; Harrigan R; De Wolf F; Lange J; Wegner S; Ruiz L; Pérez-Elías MJ; Emery S; Gatell J; Monforte AD; Torti C; Zazzi M; Lane C
    Antivir Ther; 2007; 12(1):15-24. PubMed ID: 17503743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of predicted phenotypes and statistical learning models in inferring virological response to antiretroviral therapy from HIV genotype.
    Altmann A; Sing T; Vermeiren H; Winters B; Van Craenenbroeck E; Van der Borght K; Rhee SY; Shafer RW; Schülter E; Kaiser R; Peres Y; Sönnerborg A; Fessel WJ; Incardona F; Zazzi M; Bacheler L; Van Vlijmen H; Lengauer T
    Antivir Ther; 2009; 14(2):273-83. PubMed ID: 19430102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting response to antiretroviral treatment by machine learning: the EuResist project.
    Zazzi M; Incardona F; Rosen-Zvi M; Prosperi M; Lengauer T; Altmann A; Sonnerborg A; Lavee T; Schülter E; Kaiser R
    Intervirology; 2012; 55(2):123-7. PubMed ID: 22286881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virologic therapy response significantly correlates with the number of active drugs as evaluated using a LiPA HIV-1 resistance scoring system.
    Ziermann R; Celis L; Derdelinckx I; Lambert C; Veeck J; Rizzo MG; Vanderborght B; Zissis G; Clumeck N; Fransen K; Vaira D; Hendricks D; Van Laethem K; Vandamme AM; Schmit JC; Knechten H; De Luca A; Louwagie J; Segers P; De Boeck K; Pottel H; De Brauwer A; Hulstaert F
    J Clin Virol; 2004 Dec; 31 Suppl 1():S7-15. PubMed ID: 15567089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences of nine drug resistance interpretation systems in predicting short-term therapy outcomes of treatment-experienced HIV-1 infected patients: a retrospective observational cohort study.
    Helm M; Walter H; Ehret R; Schmit JC; Kurowski M; Knechten H; Korn K; Braun P; Schmidt B
    Eur J Med Res; 2007 Jun; 12(6):231-42. PubMed ID: 17666312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable prediction of antiretroviral treatment outcome by different systems for interpreting genotypic human immunodeficiency virus type 1 drug resistance.
    De Luca A; Cingolani A; Di Giambenedetto S; Trotta MP; Baldini F; Rizzo MG; Bertoli A; Liuzzi G; Narciso P; Murri R; Ammassari A; Perno CF; Antinori A
    J Infect Dis; 2003 Jun; 187(12):1934-43. PubMed ID: 12792870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning from past treatments and their outcome improves prediction of in vivo response to anti-HIV therapy.
    Saigo H; Altmann A; Bogojeska J; Müller F; Nowozin S; Lengauer T
    Stat Appl Genet Mol Biol; 2011; 10():Article 6. PubMed ID: 21291416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of response to antiretroviral therapy by human experts and by the EuResist data-driven expert system (the EVE study).
    Zazzi M; Kaiser R; Sönnerborg A; Struck D; Altmann A; Prosperi M; Rosen-Zvi M; Petroczi A; Peres Y; Schülter E; Boucher CA; Brun-Vezinet F; Harrigan PR; Morris L; Obermeier M; Perno CF; Phanuphak P; Pillay D; Shafer RW; Vandamme AM; van Laethem K; Wensing AM; Lengauer T; Incardona F
    HIV Med; 2011 Apr; 12(4):211-8. PubMed ID: 20731728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelled in vivo HIV fitness under drug selective pressure and estimated genetic barrier towards resistance are predictive for virological response.
    Deforche K; Cozzi-Lepri A; Theys K; Clotet B; Camacho RJ; Kjaer J; Van Laethem K; Phillips A; Moreau Y; Lundgren JD; Vandamme AM;
    Antivir Ther; 2008; 13(3):399-407. PubMed ID: 18572753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dealing with sparse data in predicting outcomes of HIV combination therapies.
    Bogojeska J; Bickel S; Altmann A; Lengauer T
    Bioinformatics; 2010 Sep; 26(17):2085-92. PubMed ID: 20624779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of nine resistance interpretation systems for HIV-1 genotyping.
    Stürmer M; Doerr HW; Staszewski S; Preiser W
    Antivir Ther; 2003 Jun; 8(3):239-44. PubMed ID: 12924541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling.
    Vermeiren H; Van Craenenbroeck E; Alen P; Bacheler L; Picchio G; Lecocq P;
    J Virol Methods; 2007 Oct; 145(1):47-55. PubMed ID: 17574687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple linear model provides highly accurate genotypic predictions of HIV-1 drug resistance.
    Wang K; Jenwitheesuk E; Samudrala R; Mittler JE
    Antivir Ther; 2004 Jun; 9(3):343-52. PubMed ID: 15259897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initiatives for developing and comparing genotype interpretation systems: external validation of existing systems for didanosine against virological response.
    Assoumou L; Brun-Vézinet F; Cozzi-Lepri A; Kuritzkes D; Phillips A; Zolopa A; Degruttola V; Miller V; Costagliola D;
    J Infect Dis; 2008 Aug; 198(4):470-80. PubMed ID: 18598191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the comparison of artificial network and interpretation systems based on genotype resistance mutations in HIV-1-infected patients.
    Flandre P; Costagliola D
    AIDS; 2006 Oct; 20(16):2118-20. PubMed ID: 17053360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.