BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19474504)

  • 1. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs).
    Cheng S; Logan BE
    Water Sci Technol; 2009; 59(10):2081. PubMed ID: 19474504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs).
    Cheng S; Logan BE
    Water Sci Technol; 2008; 58(4):853-7. PubMed ID: 18776621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen production using single-chamber membrane-free microbial electrolysis cells.
    Hu H; Fan Y; Liu H
    Water Res; 2008 Sep; 42(15):4172-8. PubMed ID: 18718624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.
    Lu L; Xing D; Liu B; Ren N
    Water Res; 2012 Mar; 46(4):1015-26. PubMed ID: 22197264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.
    Lu L; Xing D; Xie T; Ren N; Logan BE
    Biosens Bioelectron; 2010 Aug; 25(12):2690-5. PubMed ID: 20537524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons.
    Bakonyi P; Kumar G; Koók L; Tóth G; Rózsenberszki T; Bélafi-Bakó K; Nemestóthy N
    Bioresour Technol; 2018 Mar; 251():381-389. PubMed ID: 29295757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges.
    Zhang Y; Angelidaki I
    Water Res; 2014 Jun; 56():11-25. PubMed ID: 24631941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells.
    Wang L; Trujillo S; Liu H
    Bioresour Technol; 2019 Feb; 274():557-560. PubMed ID: 30578015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanogenesis in membraneless microbial electrolysis cells.
    Clauwaert P; Verstraete W
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):829-36. PubMed ID: 19050859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells.
    Cheng D; Ngo HH; Guo W; Chang SW; Nguyen DD; Zhang S; Deng S; An D; Hoang NB
    Bioresour Technol; 2022 Feb; 346():126588. PubMed ID: 34929329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular biomass capable of partial nitritation and anammox.
    Vlaeminck SE; Cloetens LF; Carballa M; Boon N; Verstraete W
    Water Sci Technol; 2009; 59(3):610-7. PubMed ID: 19214017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.
    Rozendal RA; Hamelers HV; Molenkamp RJ; Buisman CJ
    Water Res; 2007 May; 41(9):1984-94. PubMed ID: 17343894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails.
    Ye X; Wang Y; Hopkins RC; Adams MW; Evans BR; Mielenz JR; Zhang YH
    ChemSusChem; 2009; 2(2):149-52. PubMed ID: 19185036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis.
    Cracknell JA; Vincent KA; Armstrong FA
    Chem Rev; 2008 Jul; 108(7):2439-61. PubMed ID: 18620369
    [No Abstract]   [Full Text] [Related]  

  • 17. Urea electrolysis: direct hydrogen production from urine.
    Boggs BK; King RL; Botte GG
    Chem Commun (Camb); 2009 Aug; (32):4859-61. PubMed ID: 19652805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermophiles for biohydrogen production in microbial electrolytic cells.
    Rathinam NK; Bibra M; Salem DR; Sani RK
    Bioresour Technol; 2019 Apr; 277():171-178. PubMed ID: 30679062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for Pt(II)-based molecular catalysis in the thermal reduction of water into molecular hydrogen.
    Yamauchi K; Masaoka S; Sakai K
    J Am Chem Soc; 2009 Jun; 131(24):8404-6. PubMed ID: 19462999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.