These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1947457)

  • 1. The work-rate-dependent effect of carbon monoxide on ventilatory control during exercise.
    Koike A; Wasserman K; Armon Y; Weiler-Ravell D
    Respir Physiol; 1991 Aug; 85(2):169-83. PubMed ID: 1947457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hypoxia and carbon monoxide on muscle oxygenation during exercise.
    Maehara K; Riley M; Galassetti P; Barstow TJ; Wasserman K
    Am J Respir Crit Care Med; 1997 Jan; 155(1):229-35. PubMed ID: 9001317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ventilatory and metabolic changes as a result of exercise training in COPD patients.
    Patessio A; Carone M; Ioli F; Donner CF
    Chest; 1992 May; 101(5 Suppl):274S-278S. PubMed ID: 1576849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ventilatory responses to sustained reduction in arterial oxygen tension vs. content in awake ponies.
    Lowry TF; Forster HV; Korducki MJ; Forster AL; Forster MA
    J Appl Physiol (1985); 1994 May; 76(5):2147-53. PubMed ID: 8063679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of acute reduction in oxygen transport on parameters of aerobic function during exercise.
    Koike A; Wasserman K
    Ann Acad Med Singap; 1992 Jan; 21(1):14-22. PubMed ID: 1590649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of inspiratory resistive loading on control of ventilation during progressive exercise.
    D'Urzo AD; Chapman KR; Rebuck AS
    J Appl Physiol (1985); 1987 Jan; 62(1):134-40. PubMed ID: 3104283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventilatory response to carbon monoxide during exercise in hypoxia and hypercapnia.
    Crocker GH; Kwon J; Kass PH; Jones JH
    Respir Physiol Neurobiol; 2017 Dec; 246():86-91. PubMed ID: 28843676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.
    Stringer W; Wasserman K; Casaburi R; Pórszász J; Maehara K; French W
    J Appl Physiol (1985); 1994 Apr; 76(4):1462-7. PubMed ID: 8045820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pedal rate on respiratory responses to incremental bicycle work.
    Takano N
    J Physiol; 1988 Feb; 396():389-97. PubMed ID: 3137329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical work capacity in relations to carbon monoxide inhalation and tobacco smoking.
    Seppänen A
    Ann Clin Res; 1977 Oct; 9(5):269-74. PubMed ID: 616212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mediation of reduced ventilatory response to exercise after endurance training.
    Casaburi R; Storer TW; Wasserman K
    J Appl Physiol (1985); 1987 Oct; 63(4):1533-8. PubMed ID: 3693191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects.
    Wasserman K; Stringer WW; Casaburi R; Koike A; Cooper CB
    Z Kardiol; 1994; 83 Suppl 3():1-12. PubMed ID: 7941654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate acidosis and the increase in VE/VO2 during incremental exercise.
    Farrell SW; Ivy JL
    J Appl Physiol (1985); 1987 Apr; 62(4):1551-5. PubMed ID: 3597224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immediate effects of cigarette smoking on cardiorespiratory responses to exercise.
    Hirsch GL; Sue DY; Wasserman K; Robinson TE; Hansen JE
    J Appl Physiol (1985); 1985 Jun; 58(6):1975-81. PubMed ID: 4008417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of work rate on ventilatory and gas exchange kinetics.
    Casaburi R; Barstow TJ; Robinson T; Wasserman K
    J Appl Physiol (1985); 1989 Aug; 67(2):547-55. PubMed ID: 2793656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease.
    Casaburi R; Patessio A; Ioli F; Zanaboni S; Donner CF; Wasserman K
    Am Rev Respir Dis; 1991 Jan; 143(1):9-18. PubMed ID: 1986689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of CO2 set point on ventilatory response to exercise.
    Oren A; Wasserman K; Davis JA; Whipp BJ
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Jul; 51(1):185-9. PubMed ID: 6790499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventilatory responses to the metabolic acidosis of treadmill and cycle ergometry.
    Koyal SN; Whipp BJ; Huntsman D; Bray GA; Wasserman K
    J Appl Physiol; 1976 Jun; 40(6):864-7. PubMed ID: 931922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that diffusion limitation determines oxygen uptake kinetics during exercise in humans.
    Koike A; Wasserman K; McKenzie DK; Zanconato S; Weiler-Ravell D
    J Clin Invest; 1990 Nov; 86(5):1698-706. PubMed ID: 2122982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventilatory response to exercise in subjects breathing CO2 or HeO2.
    Babb TG
    J Appl Physiol (1985); 1997 Mar; 82(3):746-54. PubMed ID: 9074958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.