These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1947461)

  • 1. Bohr shift by lactic acid and the supply of O2 to skeletal muscle.
    Böning D; Hollnagel C; Boecker A; Göke S
    Respir Physiol; 1991 Aug; 85(2):231-43. PubMed ID: 1947461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the seemingly diminished CO2-Bohr effect in hypoxic chemodenervated rabbits.
    Kiwull-Schöne H; Gärtner B; Kiwull P
    Adv Exp Med Biol; 1984; 169():163-73. PubMed ID: 6428180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of the Bohr effect for tissue oxygenation in a model with counter-current blood flow.
    Kobayashi H; Pelster B; Piiper J; Scheid P
    Respir Physiol; 1989 Jun; 76(3):277-88. PubMed ID: 2501842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bohr effect data for blood gas calculations.
    Hlastala MP; Woodson RD
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Sep; 55(3):1002-7. PubMed ID: 6415006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of extreme metabolic acidosis on oxygen delivery capacity of the blood--an in vitro investigation of changes in the oxyhemoglobin dissociation curve in blood with pH values of approximately 6.30.
    Refsum HE; Opdahl H; Leraand S
    Crit Care Med; 1997 Sep; 25(9):1497-501. PubMed ID: 9295823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid-base and respiratory properties of a buffered bovine erythrocyte perfusion medium.
    Lindinger MI; Heigenhauser GJ; Jones NL
    Can J Physiol Pharmacol; 1986 May; 64(5):550-5. PubMed ID: 3730939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of exercise and endurance training on the oxygen dissociation curve of blood under in vivo and in vitro conditions.
    Böning D; Schwiegart U; Tibes U; Hemmer B
    Eur J Appl Physiol Occup Physiol; 1975; 34(1):1-10. PubMed ID: 238833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course of muscular blood metabolites during forearm rhythmic exercise in hypoxia.
    Raynaud J; Douguet D; Legros P; Capderou A; Raffestin B; Durand J
    J Appl Physiol (1985); 1986 Apr; 60(4):1203-8. PubMed ID: 3700304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.
    Stringer W; Wasserman K; Casaburi R; Pórszász J; Maehara K; French W
    J Appl Physiol (1985); 1994 Apr; 76(4):1462-7. PubMed ID: 8045820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood osmolality in vitro: dependence on PCO2, lactic acid concentration, and O2 saturation.
    Böning D; Maassen N
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jan; 54(1):118-22. PubMed ID: 6402467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual effect of 2,3-diphosphoglycerate on the Bohr effects of human blood.
    Duhm J
    Pflugers Arch; 1976 May; 363(1):55-60. PubMed ID: 5701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of CO2, O2, and acid in arteriovenous [H+] difference during muscle contractions.
    Stainsby WN; Eitzman PD
    J Appl Physiol (1985); 1988 Oct; 65(4):1803-10. PubMed ID: 2846498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise O2 transport model assuming zero cytochrome PO2 at VO2 max.
    Severinghaus JW
    J Appl Physiol (1985); 1994 Aug; 77(2):671-8. PubMed ID: 8002513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen affinity and Bohr coefficients of dog blood.
    Reeves RB; Park JS; Lapennas GN; Olszowka AJ
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jul; 53(1):87-95. PubMed ID: 7118650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of stimulation parameters on the release of adenosine, lactate and CO2 from contracting dog gracilis muscle.
    Achike FI; Ballard HJ
    J Physiol; 1993 Apr; 463():107-21. PubMed ID: 8246177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human whole-blood O2 affinity: effect of CO2.
    Kwant G; Oeseburg B; Zwart A; Zijlstra WG
    J Appl Physiol (1985); 1988 Jun; 64(6):2400-9. PubMed ID: 3136125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic metabolism of the respiratory muscles during exercise.
    Martin BJ; Chen HI; Kolka MA
    Med Sci Sports Exerc; 1984; 16(1):82-6. PubMed ID: 6708786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of lungs and inactive muscle in acid-base control after maximal exercise.
    Kowalchuk JM; Heigenhauser GJ; Lindinger MI; Obminski G; Sutton JR; Jones NL
    J Appl Physiol (1985); 1988 Nov; 65(5):2090-6. PubMed ID: 3145276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanisms facilitating oxygen delivery during exercise in patients with chronic heart failure].
    Agostoni P; Assanelli E; Guazzi M; Grazi M; Perego GB; Lomanto M; Cattadori G; Lauri G; Marenzi G
    Cardiologia; 1997 Jul; 42(7):743-50. PubMed ID: 9270180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.