These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19474856)

  • 21. A frontal projection-type three-dimensional display.
    Kim Y; Hong K; Yeom J; Hong J; Jung JH; Lee YW; Park JH; Lee B
    Opt Express; 2012 Aug; 20(18):20130-8. PubMed ID: 23037066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays.
    Yöntem AÖ; Onural L
    J Opt Soc Am A Opt Image Sci Vis; 2011 Nov; 28(11):2359-75. PubMed ID: 22048304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Projection-type integral imaging system using multiple elemental image layers.
    Kim Y; Park SG; Min SW; Lee B
    Appl Opt; 2011 Mar; 50(7):B18-24. PubMed ID: 21364707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wide-Viewing-Angle Integral Imaging System with Full-Effective-Pixels Elemental Image Array.
    Liu Z; Li D; Deng H
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of projector pixel shape on ultrahigh-resolution 3D shape measurement.
    Hyun JS; Zhang S
    Opt Express; 2020 Mar; 28(7):9510-9520. PubMed ID: 32225557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. View image generation in perspective and orthographic projection geometry based on integral imaging.
    Park JH; Baasantseren G; Kim N; Park G; Kang JM; Lee B
    Opt Express; 2008 Jun; 16(12):8800-13. PubMed ID: 18545593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple correction method of distorted elemental images using surface markers on lenslet array for computational integral imaging reconstruction.
    Lee JJ; Shin DH; Lee BG
    Opt Express; 2009 Sep; 17(20):18026-37. PubMed ID: 19907592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced resolution of holographic stereograms by moving or diffusing a virtual pinhole array.
    Wang Z; Lv G; Feng Q; Wang A; Ming H
    Opt Express; 2020 Jul; 28(15):22755-22766. PubMed ID: 32752532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.
    Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B
    Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional imaging with simultaneous reproduction of two image elements in one display pixel by linearization of intensity ratio of two images formed by any physical gear.
    Ezhov V
    Appl Opt; 2011 Dec; 50(34):6313-8. PubMed ID: 22192981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Color moiré reduction and resolution enhancement of flat-panel integral three-dimensional display.
    Sasaki H; Okaichi N; Watanabe H; Kano M; Miura M; Kawakita M; Mishina T
    Opt Express; 2019 Mar; 27(6):8488-8503. PubMed ID: 31052665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of device resolution on three-dimensional integral imaging.
    Jin F; Jang JS; Javidi B
    Opt Lett; 2004 Jun; 29(12):1345-7. PubMed ID: 15233430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolution-enhanced holographic stereogram based on integral imaging using a moving array lenslet technique and an aperture array filter.
    Dai P; Lv G; Wang Z; Zhang X; Gong X; Feng Q
    Appl Opt; 2019 Oct; 58(30):8207-8212. PubMed ID: 31674495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes.
    Jang JS; Javidi B
    Opt Lett; 2003 Oct; 28(20):1924-6. PubMed ID: 14587777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Orthoscopic real image reconstruction in integral imaging by rotating an elemental image based on the reference point of object space.
    Jang JY; Cho M
    Appl Opt; 2015 Jun; 54(18):5877-81. PubMed ID: 26193043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element.
    Jang C; Hong K; Yeom J; Lee B
    Opt Express; 2014 Nov; 22(23):27958-67. PubMed ID: 25402036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-multiplexed multi-view three-dimensional display with projector array and steering screen.
    Xia X; Zhang X; Zhang L; Surman P; Zheng Y
    Opt Express; 2018 Jun; 26(12):15528-15538. PubMed ID: 30114812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elemental image array generation algorithm with accurate depth information for integral imaging.
    Mao Y; Wang W; Jiang X; Zhang T; Yu H; Li P; Liu X; Le S
    Appl Opt; 2021 Nov; 60(31):9875-9886. PubMed ID: 34807176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pixel-density enhanced integral three-dimensional display with two-dimensional image synthesis.
    Watanabe H; Arai J; Tsutake C; Takahashi K; Fujii T
    Opt Express; 2022 Sep; 30(20):36038-36054. PubMed ID: 36258541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal.
    Zhang HL; Deng H; Li JJ; He MY; Li DH; Wang QH
    Opt Lett; 2019 Jan; 44(2):387-390. PubMed ID: 30644907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.