These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 19474867)

  • 1. Modulation-free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer.
    Burdack P; Tröbs M; Hunnekuhl M; Fallnich C; Freitag I
    Opt Express; 2004 Feb; 12(4):644-50. PubMed ID: 19474867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency stabilization of the 1064-nm Nd:YAG lasers to Doppler-broadened lines of iodine.
    Arie A; Byer RL
    Appl Opt; 1993 Dec; 32(36):7382-6. PubMed ID: 20861952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-frequency-stability diode-pumped Nd:YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm.
    Galzerano G; Svelto C; Bava E; Bertinetto F
    Appl Opt; 1999 Nov; 38(33):6962-6. PubMed ID: 18324239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space interferometry application of laser frequency stabilization with molecular iodine.
    Leonhardt V; Camp JB
    Appl Opt; 2006 Jun; 45(17):4142-6. PubMed ID: 16761057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interferometric, modulation-free laser stabilization.
    Robins NP; Slagmolen BJ; Shaddock DA; Close JD; Gray MB
    Opt Lett; 2002 Nov; 27(21):1905-7. PubMed ID: 18033397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency stabilization of a 1319-nm Nd:YAG laser by saturation spectroscopy of molecular iodine.
    Guo R; Hong FL; Onae A; Bi ZY; Matsumoto H; Nakagawa K
    Opt Lett; 2004 Aug; 29(15):1733-5. PubMed ID: 15352353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The frequency stabilization method of laser feedback interferometer based on external cavity modulation.
    Zeng Z; Zhang S; Tan Y; Wu Y; Li Y
    Rev Sci Instrum; 2013 Feb; 84(2):025108. PubMed ID: 23464252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of sub-Doppler DAVLL to laser frequency stabilization in atomic cesium.
    Su DQ; Meng TF; Ji ZH; Yuan JP; Zhao YT; Xiao LT; Jia ST
    Appl Opt; 2014 Oct; 53(30):7011-6. PubMed ID: 25402788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy.
    Dinesan H; Fasci E; Castrillo A; Gianfrani L
    Opt Lett; 2014 Apr; 39(7):2198-201. PubMed ID: 24686710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute frequency stability of a diode-laser-pumped Nd:YAG laser stabilized to a high-finesse optical cavity.
    Nakagawa K; Shelkovnikov AS; Katsuda T; Ohtsu M
    Appl Opt; 1994 Sep; 33(27):6383-6. PubMed ID: 20941174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency stabilization of an external-cavity diode laser to metastable argon atoms in a discharge.
    Douglas P; Maher-McWilliams C; Barker PF
    Rev Sci Instrum; 2012 Jun; 83(6):063107. PubMed ID: 22755615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on the performances of second-harmonic dispersion interferometers at 10.6  µm and 1064  nm for plasma density measurements.
    Brandi F; Wessel F; Lohff CM; Duff JR; Haralson ZO
    Appl Opt; 2020 Sep; 59(27):8486-8493. PubMed ID: 32976434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-frequency stabilization with differential single-beam saturated absorption spectroscopy of
    Wang B; Peng X; Wang H; Liu Y; Guo H
    Rev Sci Instrum; 2022 Apr; 93(4):043001. PubMed ID: 35489925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H(2)O17 absorption lines at 1.384 microm.
    Galzerano G; Fasci E; Castrillo A; Coluccelli N; Gianfrani L; Laporta P
    Opt Lett; 2009 Oct; 34(20):3107-9. PubMed ID: 19838241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Theoretical analysis of saturated spectral line shape of noise immune cavity enhanced optical heterodyne molecular spectroscopy].
    Ma WG; Tan W; Zhao G; Li ZX; Fu XF; Dong L; Zhang L; Yin WB; Jia ST
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2180-4. PubMed ID: 25474958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrier frequency modulation of an acousto-optic modulator for laser stabilization.
    Aldous M; Woods J; Dragomir A; Roy R; Himsworth M
    Opt Express; 2017 May; 25(11):12830-12838. PubMed ID: 28786635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser frequency stabilization by modulation transfer spectroscopy and balanced detection of molecular iodine for laser cooling of
    de Melo ÁMG; Letellier H; Apoorva A; Glicenstein A; Kaiser R
    Opt Express; 2024 Feb; 32(4):6204-6214. PubMed ID: 38439329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Temperature compensation strategy and implementation for photoelectric modulation interferometer with large optical path difference].
    Wang YC; Wang ZB; Zhang JL; Chen YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1429-32. PubMed ID: 23905367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer.
    Wei F; Chen D; Fang Z; Cai H; Qu R
    Opt Lett; 2010 Nov; 35(22):3853-5. PubMed ID: 21082019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Note: Measurement speed improvement of microchip Nd:YAG laser feedback interferometer.
    Zhang S; Tan Y; Zhang S
    Rev Sci Instrum; 2014 Mar; 85(3):036112. PubMed ID: 24689640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.