These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19474893)

  • 1. Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers.
    Luan F; Knight J; Russell P; Campbell S; Xiao D; Reid D; Mangan B; Williams D; Roberts P
    Opt Express; 2004 Mar; 12(5):835-40. PubMed ID: 19474893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling.
    Gèrôme F; Dupriez P; Clowes J; Knight JC; Wadsworth WJ
    Opt Express; 2008 Feb; 16(4):2381-6. PubMed ID: 18542316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse quality analysis on soliton pulse compression and soliton self-frequency shift in a hollow-core photonic bandgap fiber.
    González-Baquedano N; Torres-Gómez I; Arzate N; Ferrando A; Ceballos-Herrera DE
    Opt Express; 2013 Apr; 21(7):9132-43. PubMed ID: 23572002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength.
    Mosley PJ; Huang WC; Welch MG; Mangan BJ; Wadsworth WJ; Knight JC
    Opt Lett; 2010 Nov; 35(21):3589-91. PubMed ID: 21042359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers.
    Fuerbach A; Steinvurzel P; Bolger JA; Nulsen A; Eggleton BJ
    Opt Lett; 2005 Apr; 30(8):830-2. PubMed ID: 15865369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber.
    de Matos C; Taylor J; Hansen T; Hansen K; Broeng J
    Opt Express; 2003 Nov; 11(22):2832-7. PubMed ID: 19471402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air-core fiber or photonic-crystal rod, which is more suitable for energetic femtosecond pulse generation and three-photon microscopy at the 1700-nm window?
    Gan M; He C; Liu H; Zhuang Z; Qiu P; Wang K
    J Biophotonics; 2019 Oct; 12(10):e201900069. PubMed ID: 31194292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression.
    Gérôme F; Cook K; George AK; Wadsworth WJ; Knight JC
    Opt Express; 2007 Jun; 15(12):7126-31. PubMed ID: 19547030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber.
    Göbel W; Nimmerjahn A; Helmchen F
    Opt Lett; 2004 Jun; 29(11):1285-7. PubMed ID: 15209273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber.
    van Howe J; Lee JH; Zhou S; Wise F; Xu C; Ramachandran S; Ghalmi S; Yan MF
    Opt Lett; 2007 Feb; 32(4):340-2. PubMed ID: 17356646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber.
    Shirakawa A; Tanisho M; Ueda K
    Opt Express; 2006 Dec; 14(25):12039-48. PubMed ID: 19529631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four-wave mixing in Ar-filled hollow core bandgap photonic crystal fiber.
    Zhao X; Cheng J; Xiong Q; Hua L; Jiang G
    Appl Opt; 2018 Jul; 57(20):5623-5627. PubMed ID: 30118073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High peak-power monolithic femtosecond ytterbium fiber chirped pulse amplifier with a spliced-on hollow core fiber compressor.
    Verhoef AJ; Jespersen K; Andersen TV; Grüner-Nielsen L; Flöry T; Zhu L; Baltuška A; Fernández A
    Opt Express; 2014 Jul; 22(14):16759-66. PubMed ID: 25090494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber.
    Lim H; Wise F
    Opt Express; 2004 May; 12(10):2231-5. PubMed ID: 19475058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gap solitons in a model of a hollow optical fiber.
    Merhasin IM; Malomed BA
    Opt Lett; 2005 May; 30(10):1105-7. PubMed ID: 15943281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on Nonlinear Spectral Properties of Photonic Crystal Fiber in Theory and Experiment].
    Zhao XT; Wang ST; Liu XX; Han Y; Zhao YY; Li SG; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1650-5. PubMed ID: 30052365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionization-induced adiabatic soliton compression in gas-filled hollow-core photonic crystal fibers.
    Huang ZY; Chen YF; Yu F; Wu DK; Zhao Y; Wang D; Leng YX
    Opt Lett; 2019 Nov; 44(22):5562-5565. PubMed ID: 31730109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength.
    Bouwmans G; Luan F; Knight J; St J Russell P; Farr L; Mangan B; Sabert H
    Opt Express; 2003 Jul; 11(14):1613-20. PubMed ID: 19466039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.