These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19475000)

  • 1. Photonic band gap analysis using finite-difference frequency-domain method.
    Guo S; Wu F; Albin S; Rogowski R
    Opt Express; 2004 Apr; 12(8):1741-6. PubMed ID: 19475000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principle calculation of Chern number in gyrotropic photonic crystals.
    Zhao R; Xie GD; Chen MLN; Lan Z; Huang Z; Sha WEI
    Opt Express; 2020 Feb; 28(4):4638-4649. PubMed ID: 32121697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of photon density of states for two-dimensional photonic crystals with in-plane light propagation.
    Lin MC; Jao RF
    Opt Express; 2007 Jan; 15(1):207-18. PubMed ID: 19532236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic band gaps in a two-dimensional hybrid triangular-graphite lattice.
    Martínez L; García-Martín A; Postigo P
    Opt Express; 2004 Nov; 12(23):5684-9. PubMed ID: 19488203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods.
    Hsu SM; Chang HC
    Opt Express; 2008 Dec; 16(26):21355-68. PubMed ID: 19104565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals.
    Yu CP; Chang HC
    Opt Express; 2004 Apr; 12(7):1397-408. PubMed ID: 19474962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transverse magnetic defect modes in two-dimensional triangular-lattice photonic crystals.
    Stojić N; Glimm J; Deng Y; Haus JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056614. PubMed ID: 11736123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs.
    Mohammadi S; Eftekhar AA; Khelif A; Adibi A
    Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-differentiated band dynamics of resonant leaky modes at the lattice Γ point.
    Lee SG; Kim SH; Kee CS; Magnusson R
    Opt Express; 2020 Dec; 28(26):39453-39462. PubMed ID: 33379494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.
    Banerjee S; Hoshino T; Cole JB
    J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):1921-8. PubMed ID: 18677354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing band gaps in two-dimensional photonic crystals in square lattices.
    Cheng XL; Yang J
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2314-9. PubMed ID: 24322930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method.
    Luo M; Liu QH
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jul; 26(7):1598-605. PubMed ID: 19568295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential differences between TE and TM band gaps in periodic films at the first Bragg condition.
    Lee SG; Magnusson R
    Opt Lett; 2019 Oct; 44(19):4658-4661. PubMed ID: 31568410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry.
    Xu Y; Chen XJ; Lan S; Dai QF; Guo Q; Wu LJ
    Opt Express; 2009 Mar; 17(6):4903-12. PubMed ID: 19293922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral element method for band structures of three-dimensional anisotropic photonic crystals.
    Luo M; Liu QH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056702. PubMed ID: 20365091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gap-edge Asymptotics of defect modes in 2D Photonic Crystals.
    Dossou KB; McPhedran RC; Botten LC; Asatryan AA; de Sterke CM
    Opt Express; 2007 Apr; 15(8):4753-62. PubMed ID: 19532721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier-Bessel analysis of localized states and photonic bandgaps in 12-fold photonic quasi-crystals.
    Newman SR; Gauthier RC
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2344-9. PubMed ID: 23201795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method based eigenvalue algorithm.
    Hsu SM; Chen MM; Chang HC
    Opt Express; 2007 Apr; 15(9):5416-30. PubMed ID: 19532796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces.
    Deng S
    Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.