These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19475013)

  • 1. In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography.
    Grilli S; Ferraro P; Paturzo M; Alfieri D; De Natale P; de Angelis M; De Nicola S; Finizio A; Pierattini G
    Opt Express; 2004 May; 12(9):1832-42. PubMed ID: 19475013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferroelectric Domain Reversal Dynamics in LiNbO
    Liu Q; Song Y; Wang F; Guo J; Wang F; Yang H; Zhang B; Wang D; Liu H; Sang Y
    Small; 2022 Aug; 18(32):e2202761. PubMed ID: 35723179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-Domains Produced through a Two-Step Poling Technique in Lithium Niobate on Insulators.
    Jiao Y; Shao Z; Li S; Wang X; Bo F; Xu J; Zhang G
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact lensless Fizeau holographic interferometry for imaging domain patterns in ferroelectric single crystals.
    Mach M; Psota P; Žídek K; Mokrý P
    Appl Opt; 2023 Apr; 62(10):2522-2530. PubMed ID: 37132800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization state dependence of laser-induced domain nucleation in lithium niobate crystals investigated by digital holography.
    Zhi Y; Shen Y; Zhu Y; Tian K
    Appl Opt; 2020 Nov; 59(32):10026-10034. PubMed ID: 33175775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional mapping of electro-optic phase retardation in lithium niobate crystals by digital holography.
    de Angelis M; De Nicola S; Finizio A; Pierattini G; Ferraro P; Grilli S; Paturzo M; Sansone L; Alfieri D; De Natale P
    Opt Lett; 2005 Jul; 30(13):1671-3. PubMed ID: 16075533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography.
    Paturzo M; Miccio L; De Nicola S; De Natale P; Ferraro P
    Opt Express; 2007 Jun; 15(13):8243-51. PubMed ID: 19547153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography.
    Grilli S; Ferraro P; De Nicola S; Finizio A; Pierattini G; De Natale P; Chiarini M
    Opt Express; 2003 Feb; 11(4):392-405. PubMed ID: 19461746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser writing of lithium niobate ferroelectric nanodomains.
    Xu X; Wang T; Chen P; Zhou C; Ma J; Wei D; Wang H; Niu B; Fang X; Wu D; Zhu S; Gu M; Xiao M; Zhang Y
    Nature; 2022 Sep; 609(7927):496-501. PubMed ID: 36104554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals.
    Carville NC; Manzo M; Damm S; Castiella M; Collins L; Denning D; Weber SA; Gallo K; Rice JH; Rodriguez BJ
    ACS Nano; 2012 Aug; 6(8):7373-80. PubMed ID: 22775541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical fixing in near-stoichiometric lithium niobate crystals.
    Eggert HA; Hecking B; Buse K
    Opt Lett; 2004 Nov; 29(21):2476-8. PubMed ID: 15584266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical method to determine the composition of lithium niobate crystals by digital holography.
    Zhi Y; Zhu Y; Pan W; Tian K
    Appl Opt; 2020 Jan; 59(2):315-323. PubMed ID: 32225309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latent light-assisted poling of LiNbO3.
    Ying YJ; Valdivia CE; Sones CL; Eason RW; Mailis S
    Opt Express; 2009 Oct; 17(21):18681-92. PubMed ID: 20372601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining.
    Zhu B; Liu H; Liu Y; Yan X; Chen Y; Chen X
    Opt Lett; 2020 Aug; 45(15):4132-4135. PubMed ID: 32735241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous Polarization Reversal Induced by Proton Exchange in Z-Cut Lithium Niobate α-Phase Channel Waveguides.
    Rambu AP; Tiron V; Oniciuc E; Tascu S
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser.
    Muir AC; Sones CL; Mailis S; Eason RW; Jungk T; Hoffman A; Soergel E
    Opt Express; 2008 Feb; 16(4):2336-50. PubMed ID: 18542312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light deflection from ferroelectric domain structures in congruent lithium tantalate crystals.
    Müller M; Soergel E; Buse K
    Appl Opt; 2004 Dec; 43(34):6344-7. PubMed ID: 15619847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free quantification of the effects of lithium niobate polarization on cell adhesion via holographic microscopy.
    Mandracchia B; Gennari O; Bramanti A; Grilli S; Ferraro P
    J Biophotonics; 2018 Aug; 11(8):e201700332. PubMed ID: 29405583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-angle electro-optic laser scanner on LiTaO(3) fabricated by in situ monitoring of ferroelectric-domain micropatterning.
    Scrymgeour DA; Barad Y; Gopalan V; Gahagan KT; Jia Q; Mitchell TE; Robinson JM
    Appl Opt; 2001 Dec; 40(34):6236-41. PubMed ID: 18364927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.