These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19475017)

  • 1. Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers.
    Digonnet M; Kim H; Shin J; Fan S; Kino G
    Opt Express; 2004 May; 12(9):1864-72. PubMed ID: 19475017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design.
    Yan M; Shum P
    Opt Lett; 2005 Aug; 30(15):1920-2. PubMed ID: 16092219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers.
    Kim HK; Digonnet M; Kino G; Shin J; Fan S
    Opt Express; 2004 Jul; 12(15):3436-42. PubMed ID: 19483869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling and decoupling of dual-core photonic bandgap fibers.
    Wang Z; Kai G; Liu Y; Liu J; Zhang C; Sun T; Wang C; Zhang W; Yuan S; Dong X
    Opt Lett; 2005 Oct; 30(19):2542-4. PubMed ID: 16208893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect.
    Barkou SE; Broeng J; Bjarklev A
    Opt Lett; 1999 Jan; 24(1):46-8. PubMed ID: 18071403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hollow-core photonic bandgap fibers based on a square lattice cladding.
    Poletti F; Richardson DJ
    Opt Lett; 2007 Aug; 32(16):2282-4. PubMed ID: 17700759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers.
    Dangui V; Digonnet MJ; Kino GS
    Opt Express; 2006 Apr; 14(7):2979-93. PubMed ID: 19516437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique.
    Hochman A; Leviatan Y
    J Opt Soc Am A Opt Image Sci Vis; 2004 Jun; 21(6):1073-81. PubMed ID: 15191190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-core, liquid-cladding photonic crystal fibers.
    De Matos CJ; Cordeiro CM; Dos Santos EM; Ong JS; Bozolan A; Brito Cruz CH
    Opt Express; 2007 Sep; 15(18):11207-12. PubMed ID: 19547475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled core-surface solitons in photonic crystal fibers.
    Skryabin D
    Opt Express; 2004 Oct; 12(20):4841-6. PubMed ID: 19484037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of structural distortions on the performance of hollow-core photonic bandgap fibers.
    Fokoua EN; Richardson DJ; Poletti F
    Opt Express; 2014 Feb; 22(3):2735-44. PubMed ID: 24663565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the mode reflection coefficient in air-core photonic bandgap fibers.
    Dangui V; Digonnet MJ; Kino GS
    Opt Express; 2007 Apr; 15(9):5342-59. PubMed ID: 19532788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband bandgap guidance and mode filtering in radially hybrid photonic crystal fiber.
    Ould-Agha Y; Bétourné A; Vanvincq O; Bouwmans G; Quiquempois Y
    Opt Express; 2012 Mar; 20(6):6746-60. PubMed ID: 22418559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of surface modes in low loss hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Gèrôme F; Leon-Saval SG; Broderick NG; Birks TA; Knight JC
    Opt Express; 2008 Jan; 16(2):1142-9. PubMed ID: 18542188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of air-guiding photonic bandgap fibers.
    Broeng J; Barkou SE; Søndergaard T; Bjarklev A
    Opt Lett; 2000 Jan; 25(2):96-8. PubMed ID: 18059794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of realistic cladding structures for air-core photonic bandgap fibers.
    Mortensen NA; Nielsen MD
    Opt Lett; 2004 Feb; 29(4):349-51. PubMed ID: 14971749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band flipping and bandgap closing in a photonic crystal ring and its applications.
    Lu X; Chanana A; Sun Y; McClung A; Davanco M; Srinivasan K
    Opt Express; 2024 May; 32(11):20360-20369. PubMed ID: 38859149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss analysis of air-core photonic crystal fibers.
    Xu Y; Yariv A
    Opt Lett; 2003 Oct; 28(20):1885-7. PubMed ID: 14587764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.