These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion. Shtaif M; Mecozzi A Opt Lett; 2000 May; 25(10):707-9. PubMed ID: 18064158 [TBL] [Abstract][Full Text] [Related]
4. Extended Jones matrix for first-order polarization mode dispersion. Heismann F Opt Lett; 2005 May; 30(10):1111-3. PubMed ID: 15943283 [TBL] [Abstract][Full Text] [Related]
5. Influence of optical source characteristics on the measurement of polarization-mode dispersion of highly mode-coupled fibers. Heffner BL Opt Lett; 1996 Jan; 21(2):113-5. PubMed ID: 19865322 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous optical signal-to-noise ratio and differential group delay monitoring based on degree of polarization measurements in optical communications systems. Floridia C; Simões GC; Feres MM; Romero MA Appl Opt; 2012 Jun; 51(17):3957-65. PubMed ID: 22695676 [TBL] [Abstract][Full Text] [Related]
8. MLSE receiver tolerance to all-order polarization mode dispersion. Cornick KE; Brodsky M; Birk M; Feuer MD Opt Express; 2007 Nov; 15(24):15999-6004. PubMed ID: 19550886 [TBL] [Abstract][Full Text] [Related]
9. First-order polarization mode dispersion compensator using two independent feedback signals enabling separation of principal states of polarization and differential group delay controls. Han KH; Lee WJ Opt Express; 2012 Feb; 20(4):3541-9. PubMed ID: 22418113 [TBL] [Abstract][Full Text] [Related]
10. Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. Feng X; Loh WH; Flanagan JC; Camerlingo A; Dasgupta S; Petropoulos P; Horak P; Frampton KE; White NM; Price JH; Rutt HN; Richardson DJ Opt Express; 2008 Sep; 16(18):13651-6. PubMed ID: 18772976 [TBL] [Abstract][Full Text] [Related]
11. Spectrally resolved reflectometric measurement of polarization mode dispersion in an optical fiber link with polarization-dependent loss. Dong H; Shum P; Gong YD; Wu CQ Opt Lett; 2007 Oct; 32(20):2999-3001. PubMed ID: 17938679 [TBL] [Abstract][Full Text] [Related]
12. Scaling properties of polarization mode dispersion of spun fibers in the presence of random mode coupling. Chen X; Li MJ; Nolan DA Opt Lett; 2002 Sep; 27(18):1595-7. PubMed ID: 18026512 [TBL] [Abstract][Full Text] [Related]
13. Influence of the birefringence autocorrelation function on the polarization mode dispersion of constantly spun fibers. Galtarossa A; Palmieri L; Schenato L Opt Lett; 2007 Nov; 32(22):3236-8. PubMed ID: 18026265 [TBL] [Abstract][Full Text] [Related]
14. Polarization mode dispersion of spun fibers: an analytical solution. Chen X; Li MJ; Nolan DA Opt Lett; 2002 Mar; 27(5):294-6. PubMed ID: 18007781 [TBL] [Abstract][Full Text] [Related]
15. Effects of lateral load and external twist on polarization-mode dispersion of spun and unspun fibers. Li MJ; Evans AF; Allen DW; Nolan DA Opt Lett; 1999 Oct; 24(19):1325-7. PubMed ID: 18079792 [TBL] [Abstract][Full Text] [Related]
17. Tunable PMD compensator based on highbirefringence. Wang M; Li T; Jian S Opt Express; 2003 Sep; 11(19):2354-63. PubMed ID: 19471344 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of the clearance of respirable para-aramid, chrysotile and glass fibres from rat lungs. Searl A Ann Occup Hyg; 1997 Apr; 41(2):217-33. PubMed ID: 9155241 [TBL] [Abstract][Full Text] [Related]