These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19475137)

  • 1. Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics.
    Wood BR; Hermelink A; Lasch P; Bambery KR; Webster GT; Khiavi MA; Cooke BM; Deed S; Naumann D; McNaughton D
    Analyst; 2009 Jun; 134(6):1119-25. PubMed ID: 19475137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes.
    Webster GT; Tilley L; Deed S; McNaughton D; Wood BR
    FEBS Lett; 2008 Apr; 582(7):1087-92. PubMed ID: 18325340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman spectroscopy in malaria research.
    Wood BR; McNaughton D
    Expert Rev Proteomics; 2006 Oct; 3(5):525-44. PubMed ID: 17078766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limitations of haemozoin-based diagnosis of Plasmodium falciparum using dark-field microscopy.
    Delahunt C; Horning MP; Wilson BK; Proctor JL; Hegg MC
    Malar J; 2014 Apr; 13():147. PubMed ID: 24739286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a needle-free diagnosis of malaria: in vivo identification and classification of red and white blood cells containing haemozoin.
    Burnett JL; Carns JL; Richards-Kortum R
    Malar J; 2017 Nov; 16(1):447. PubMed ID: 29115957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of atomic force microscopy and Raman micro-spectroscopy to study the effects of ex vivo treatment procedures on human red blood cells.
    Asghari-Khiavi M; Wood BR; Mechler A; Bambery KR; Buckingham DW; Cooke BM; McNaughton D
    Analyst; 2010 Mar; 135(3):525-30. PubMed ID: 20174705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ localization and structural analysis of the malaria pigment hemozoin.
    Frosch T; Koncarevic S; Zedler L; Schmitt M; Schenzel K; Becker K; Popp J
    J Phys Chem B; 2007 Sep; 111(37):11047-56. PubMed ID: 17718555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative Raman and CARS imaging study of colon tissue.
    Krafft C; Ramoji AA; Bielecki C; Vogler N; Meyer T; Akimov D; Rösch P; Schmitt M; Dietzek B; Petersen I; Stallmach A; Popp J
    J Biophotonics; 2009 May; 2(5):303-12. PubMed ID: 19434617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology-sensitive Raman modes of the malaria pigment hemozoin.
    Frosch T; Koncarevic S; Becker K; Popp J
    Analyst; 2009 Jun; 134(6):1126-32. PubMed ID: 19475138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites.
    Puskar L; Tuckermann R; Frosch T; Popp J; Ly V; McNaughton D; Wood BR
    Lab Chip; 2007 Sep; 7(9):1125-31. PubMed ID: 17713610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy.
    Nagao E; Kaneko O; Dvorak JA
    J Struct Biol; 2000 May; 130(1):34-44. PubMed ID: 10806089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectroscopic analysis of malaria disease progression via blood and plasma samples.
    Hobro AJ; Konishi A; Coban C; Smith NI
    Analyst; 2013 Jul; 138(14):3927-33. PubMed ID: 23529513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of heme species in erythrocytes infected with Plasmodium falciparum by use of resonance Raman imaging and multivariate analysis.
    Bonifacio A; Finaurini S; Krafft C; Parapini S; Taramelli D; Sergo V
    Anal Bioanal Chem; 2008 Dec; 392(7-8):1277-82. PubMed ID: 18836854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated detection of haemozoin-containing monocytes for the diagnosis of malaria in microscopically negative cases during pregnancy.
    Hänscheid T; Längin M; Codices V; Luty AJ; Adegnika AA; Kremsner PG; Grobusch MP
    Acta Trop; 2009 Mar; 109(3):245-6. PubMed ID: 19121281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trophozoite stage infected erythrocyte contents analysis by use of spectral imaging LED microscope.
    Zoueu JT; Zan SG
    J Microsc; 2012 Jan; 245(1):90-9. PubMed ID: 21981658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discriminating the intraerythrocytic lifecycle stages of the malaria parasite using synchrotron FT-IR microspectroscopy and an artificial neural network.
    Webster GT; de Villiers KA; Egan TJ; Deed S; Tilley L; Tobin MJ; Bambery KR; McNaughton D; Wood BR
    Anal Chem; 2009 Apr; 81(7):2516-24. PubMed ID: 19278236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using elastic light scattering of red blood cells to detect infection of malaria parasite.
    Lee S; Lu W
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):150-5. PubMed ID: 21926010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells.
    Brückner M; Becker K; Popp J; Frosch T
    Anal Chim Acta; 2015 Sep; 894():76-84. PubMed ID: 26423630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmodium falciparum: highly mobile small vesicles in the malaria-infected red blood cell cytoplasm.
    Hibbs AR; Saul AJ
    Exp Parasitol; 1994 Nov; 79(3):260-9. PubMed ID: 7957748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics.
    Omucheni DL; Kaduki KA; Bulimo WD; Angeyo HK
    Malar J; 2014 Dec; 13():485. PubMed ID: 25495235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.