These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 19475174)

  • 1. On the proton transfer mechanism in ammonia-bridged 7-hydroxyquinoline: a TDDFT molecular dynamics study.
    Guglielmi M; Tavernelli I; Rothlisberger U
    Phys Chem Chem Phys; 2009 Jun; 11(22):4549-55. PubMed ID: 19475174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited-state diproton transfer in [2,2'-bipyridyl]-3,3'-diol: the mechanism is sequential, not concerted.
    Plasser F; Barbatti M; Aquino AJ; Lischka H
    J Phys Chem A; 2009 Jul; 113(30):8490-9. PubMed ID: 19572684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dynamics study of the excited-state double-proton transfer in 2,2'-bipyridyl-3,3'-diol.
    Gelabert R; Moreno M; Lluch JM
    Chemphyschem; 2004 Sep; 5(9):1372-8. PubMed ID: 15499853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wagging motion of hydrogen-bonded wire in the excited-state multiple proton transfer process of 7-hydroxyquinoline·(NH3)3 cluster.
    Liu YH; Lan SC; Li CR
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():257-62. PubMed ID: 23673244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive force fields for proton transfer dynamics.
    Lammers S; Lutz S; Meuwly M
    J Comput Chem; 2008 May; 29(7):1048-63. PubMed ID: 18072179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.
    Lan SC; Liu YH
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():49-53. PubMed ID: 25554951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring excited-state hydrogen atom transfer along an ammonia wire cluster: competitive reaction paths and vibrational mode selectivity.
    Tanner C; Manca C; Leutwyler S
    J Chem Phys; 2005 May; 122(20):204326. PubMed ID: 15945743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen transfer vs proton transfer in 7-hydroxy-quinoline.(NH3)3: a CASSCF/CASPT2 study.
    Fernández-Ramos A; Martínez-Núñez E; Vázquez SA; Ríos MA; Estévez CM; Merchán M; Serrano-Andrés L
    J Phys Chem A; 2007 Jul; 111(26):5907-12. PubMed ID: 17566997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton exchanges between phenols and ammonia or amines: a computational study.
    Lu YX; Zou JW; Jin ZM; Wang YH; Zhang HX; Jiang YJ; Yu QS
    J Phys Chem A; 2006 Jul; 110(29):9261-6. PubMed ID: 16854042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of proton transfer in bacteriorhodopsin.
    Lee YS; Krauss M
    J Am Chem Soc; 2004 Feb; 126(7):2225-30. PubMed ID: 14971958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operation of the proton wire in green fluorescent protein. A quantum dynamics simulation.
    Vendrell O; Gelabert R; Moreno M; Lluch JM
    J Phys Chem B; 2008 May; 112(17):5500-11. PubMed ID: 18396917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures.
    Bankura A; Chandra A
    J Chem Phys; 2012 Mar; 136(11):114509. PubMed ID: 22443779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protonation of the chromophore in the photoactive yellow protein.
    Leenders EJ; Guidoni L; Röthlisberger U; Vreede J; Bolhuis PG; Meijer EJ
    J Phys Chem B; 2007 Apr; 111(14):3765-73. PubMed ID: 17388542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited-state proton transfer via hydrogen-bonded acetic acid (AcOH) wire for 6-hydroxyquinoline.
    Liu YH; Mehata MS; Liu JY
    J Phys Chem A; 2011 Jan; 115(1):19-24. PubMed ID: 21141974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions.
    Bondar AN; Baudry J; Suhai S; Fischer S; Smith JC
    J Phys Chem B; 2008 Nov; 112(47):14729-41. PubMed ID: 18973373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimum energy pathways for proton transfer between adjacent sites exposed to water.
    Friedman R; Fischer S; Nachliel E; Scheiner S; Gutman M
    J Phys Chem B; 2007 May; 111(21):6059-70. PubMed ID: 17488114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of liquid ammonia based on the combined quantum mechanical/molecular mechanical (QM/MM) approach.
    Tongraar A; Kerdcharoen T; Hannongbua S
    J Phys Chem A; 2006 Apr; 110(14):4924-9. PubMed ID: 16599463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton transfer of NH3-HCl catalyzed by only one molecule.
    Li RJ; Li ZR; Wu D; Chen W; Li Y; Wang BQ; Sun CC
    J Phys Chem A; 2005 Feb; 109(4):629-34. PubMed ID: 16833389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible mechanism of proton transfer through peptide groups in the H-pathway of the bovine cytochrome c oxidase.
    Kamiya K; Boero M; Tateno M; Shiraishi K; Oshiyama A
    J Am Chem Soc; 2007 Aug; 129(31):9663-73. PubMed ID: 17636907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic aspects of proton chain transfer: a computational study for the green fluorescent protein chromophore.
    Wang S; Smith SC
    J Phys Chem B; 2006 Mar; 110(10):5084-93. PubMed ID: 16526751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.