These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19475507)

  • 1. Parametric versus nonparametric transfer function estimation of cerebral autoregulation from spontaneous blood-pressure oscillations.
    Jachan M; Reinhard M; Spindeler L; Hetzel A; Schelter B; Timmer J
    Cardiovasc Eng; 2009 Jun; 9(2):72-82. PubMed ID: 19475507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cardiovascular oscillations: a new approach to the early prediction of pre-eclampsia.
    Malberg H; Bauernschmitt R; Voss A; Walther T; Faber R; Stepan H; Wessel N
    Chaos; 2007 Mar; 17(1):015113. PubMed ID: 17411270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate and multidimensional analysis of cardiovascular oscillations in patients with heart failure.
    Voss A; Schroeder R; Truebner S; Baumert M; Goernig M; Hagenow A; Figulla HR
    Biomed Tech (Berl); 2006 Oct; 51(4):163-6. PubMed ID: 17061930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of confounding factors on blood pressure estimation using pulse arrival time.
    Kim JS; Kim KK; Baek HJ; Park KS
    Physiol Meas; 2008 May; 29(5):615-24. PubMed ID: 18460767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined transfer function analysis and modelling of cerebral autoregulation.
    Payne SJ; Tarassenko L
    Ann Biomed Eng; 2006 May; 34(5):847-58. PubMed ID: 16708269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of nonlinearity in cardiovascular variability signals using cyclostationary analysis.
    Seydnejad S
    Ann Biomed Eng; 2007 May; 35(5):744-54. PubMed ID: 17372836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal filter design to compute the mean of cardiovascular pressure signals.
    Ellis T; McNames J; Goldstein B
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1399-407. PubMed ID: 18390331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements.
    Panerai RB; Sammons EL; Smith SM; Rathbone WE; Bentley S; Potter JF; Samani NJ
    Physiol Meas; 2008 Apr; 29(4):497-513. PubMed ID: 18401070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of nonlinear methods symbolic dynamics, detrended fluctuation, and Poincare plot analysis in risk stratification in patients with dilated cardiomyopathy.
    Voss A; Schroeder R; Truebner S; Goernig M; Figulla HR; Schirdewan A
    Chaos; 2007 Mar; 17(1):015120. PubMed ID: 17411277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective selection of signals for assessment of cerebral blood flow autoregulation in neonates.
    Ramos EG; Simpson DM; Panerai RB; Nadal J; Lopes JM; Evans DH
    Physiol Meas; 2006 Jan; 27(1):35-49. PubMed ID: 16365509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a novel method to determine non-invasively the rate of central aortic pressure changes.
    Gorenberg M; Marmor A
    J Med Eng Technol; 2008; 32(4):257-62. PubMed ID: 18666005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulse morphology visualization and analysis with applications in cardiovascular pressure signals.
    Ellis T; McNames J; Aboy M
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1552-9. PubMed ID: 17867347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing blood flow control through a bootstrap method.
    Simpson DM; Panerai RB; Ramos EG; Lopes JM; Marinatto MN; Nadal J; Evans DH
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1284-6. PubMed ID: 15248547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulse wave velocity and digital volume pulse as indirect estimators of blood pressure: pilot study on healthy volunteers.
    Padilla JM; Berjano EJ; Sáiz J; Rodriguez R; Fácila L
    Cardiovasc Eng; 2009 Sep; 9(3):104-12. PubMed ID: 19657733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations.
    Themelis G; D'Arceuil H; Diamond SG; Thaker S; Huppert TJ; Boas DA; Franceschini MA
    J Biomed Opt; 2007; 12(1):014033. PubMed ID: 17343508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular oscillations of the carotid artery assessed by magnetoelastic skin curvature sensor.
    Kaniusas E; Pfützner H; Mehnen L; Kosel J; Varoneckas G; Alonderis A; Zakarevicius L
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):369-72. PubMed ID: 18232386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects.
    Wong MY; Poon CC; Zhang YT
    Cardiovasc Eng; 2009 Mar; 9(1):32-8. PubMed ID: 19381806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability, regularity, and complexity of time series generated by schizophrenic patients and control subjects.
    Hornero R; Abásolo D; Jimeno N; Sánchez CI; Poza J; Aboy M
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):210-8. PubMed ID: 16485749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous low-frequency oscillations in cerebral vessels: applications in carotid artery disease and ischemic stroke.
    Schytz HW; Hansson A; Phillip D; Selb J; Boas DA; Iversen HK; Ashina M
    J Stroke Cerebrovasc Dis; 2010; 19(6):465-74. PubMed ID: 20864356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.