BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19475687)

  • 41. [Ursodeoxycholic acid in the treatment of cholestatic liver diseases].
    Arrese M; Accatino L
    Rev Med Chil; 1993 Apr; 121(4):439-46. PubMed ID: 8272619
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γδ T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease.
    Tedesco D; Thapa M; Chin CY; Ge Y; Gong M; Li J; Gumber S; Speck P; Elrod EJ; Burd EM; Kitchens WH; Magliocca JF; Adams AB; Weiss DS; Mohamadzadeh M; Grakoui A
    Gastroenterology; 2018 Jun; 154(8):2178-2193. PubMed ID: 29454797
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Therapeutic role of bile acids and nuclear receptor agonists in fibrosing cholangiopathies.
    Trauner M; Halilbasic E; Kazemi-Shirazi L; Kienbacher C; Staufer K; Traussnigg S; Hofer H
    Dig Dis; 2014; 32(5):631-6. PubMed ID: 25034298
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of Na+ replacement and amiloride on ursodeoxycholic acid-stimulated choleresis and biliary bicarbonate secretion.
    Lake JR; Van Dyke RW; Scharschmidt BF
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G163-9. PubMed ID: 3826345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pharmacotherapy of cholestatic liver diseases.
    Paumgartner G
    J Dig Dis; 2010 Jun; 11(3):119-25. PubMed ID: 20579215
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice.
    Li X; Liu R; Yang J; Sun L; Zhang L; Jiang Z; Puri P; Gurley EC; Lai G; Tang Y; Huang Z; Pandak WM; Hylemon PB; Zhou H
    Hepatology; 2017 Sep; 66(3):869-884. PubMed ID: 28271527
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action.
    Poupon R
    Clin Res Hepatol Gastroenterol; 2012 Sep; 36 Suppl 1():S3-12. PubMed ID: 23141891
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis.
    Trauner M; Wagner M; Fickert P; Zollner G
    J Clin Gastroenterol; 2005 Apr; 39(4 Suppl 2):S111-24. PubMed ID: 15758646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolism and effects on cholestasis of isoursodeoxycholic and ursodeoxycholic acids in bile duct ligated rats.
    Purucker E; Marschall HU; Winograd R; Matern S
    Biochim Biophys Acta; 2001 Apr; 1526(1):44-52. PubMed ID: 11287121
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3alpha-6alpha-Dihydroxy-7alpha-fluoro-5beta-cholanoate (UPF-680), physicochemical and physiological properties of a new fluorinated bile acid that prevents 17alpha-ethynyl-estradiol-induced cholestasis in rats.
    Clerici C; Castellani D; Asciutti S; Pellicciari R; Setchell KD; O'Connell NC; Sadeghpour B; Camaioni E; Fiorucci S; Renga B; Nardi E; Sabatino G; Clementi M; Giuliano V; Baldoni M; Orlandi S; Mazzocchi A; Morelli A; Morelli O
    Toxicol Appl Pharmacol; 2006 Jul; 214(2):199-208. PubMed ID: 16487557
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice.
    Wagner M; Halilbasic E; Marschall HU; Zollner G; Fickert P; Langner C; Zatloukal K; Denk H; Trauner M
    Hepatology; 2005 Aug; 42(2):420-30. PubMed ID: 15986414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.
    Fickert P; Fuchsbichler A; Wagner M; Zollner G; Kaser A; Tilg H; Krause R; Lammert F; Langner C; Zatloukal K; Marschall HU; Denk H; Trauner M
    Gastroenterology; 2004 Jul; 127(1):261-74. PubMed ID: 15236191
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ursodeoxycholic acid choleresis: relationship to biliary HCO-3 and effects of Na+-H+ exchange inhibitors.
    Renner EL; Lake JR; Cragoe EJ; Van Dyke RW; Scharschmidt BF
    Am J Physiol; 1988 Feb; 254(2 Pt 1):G232-41. PubMed ID: 2831731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bile duct proliferation associated with bile salt-induced hypercholeresis in Mdr2 P-glycoprotein-deficient mice.
    Hulzebos CV; Voshol PJ; Wolters H; Kruit JK; Ottenhof R; Groen AK; Stellaard F; Verkade HJ; Kuipers F
    Liver Int; 2005 Jun; 25(3):604-12. PubMed ID: 15910498
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Failure of ursodeoxycholic acid to prevent a cholestatic episode in a patient with benign recurrent intrahepatic cholestasis: a study of bile acid metabolism.
    Crosignani A; Podda M; Bertolini E; Battezzati PM; Zuin M; Setchell KD
    Hepatology; 1991 Jun; 13(6):1076-83. PubMed ID: 2050325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice.
    Miethke AG; Zhang W; Simmons J; Taylor AE; Shi T; Shanmukhappa SK; Karns R; White S; Jegga AG; Lages CS; Nkinin S; Keller BT; Setchell KD
    Hepatology; 2016 Feb; 63(2):512-23. PubMed ID: 26172874
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of mdr2 mutation with combined tandem disruption of canalicular glycoprotein transporters by cyclosporine A on bile formation in mice.
    Elamiri A; Perwaiz S; Tuchweber B; Yousef IM
    Pharmacol Res; 2003 Nov; 48(5):467-72. PubMed ID: 12967592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ursodeoxycholic and tauro-ursodeoxycholic acids for the treatment of primary biliary cirrhosis: a pilot crossover study.
    Larghi A; Crosignani A; Battezzati PM; De Valle G; Allocca M; Invernizzi P; Zuin M; Podda M
    Aliment Pharmacol Ther; 1997 Apr; 11(2):409-14. PubMed ID: 9146783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: transport and gene expression studies.
    Wang R; Liu L; Sheps JA; Forrest D; Hofmann AF; Hagey LR; Ling V
    Am J Physiol Gastrointest Liver Physiol; 2013 Aug; 305(4):G286-94. PubMed ID: 23764895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for functional selectivity in TUDC- and norUDCA-induced signal transduction via α
    Bonus M; Sommerfeld A; Qvartskhava N; Görg B; Ludwig BS; Kessler H; Gohlke H; Häussinger D
    Sci Rep; 2020 Apr; 10(1):5795. PubMed ID: 32242141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.