These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19475959)

  • 1. Forward modeling of metal complexation by NOM: I. A priori prediction of conditional constants and speciation.
    Cabaniss SE
    Environ Sci Technol; 2009 Apr; 43(8):2838-44. PubMed ID: 19475959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forward modeling of metal complexation by NOM: II. prediction of binding site properties.
    Cabaniss SE
    Environ Sci Technol; 2011 Apr; 45(8):3202-9. PubMed ID: 21087041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-property relationships for predicting metal binding by organic ligands.
    Cabaniss SE
    Environ Sci Technol; 2008 Jul; 42(14):5210-6. PubMed ID: 18754371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters.
    Cheng T; Allen HE
    J Environ Manage; 2006 Aug; 80(3):222-9. PubMed ID: 16338053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands.
    Baken S; Degryse F; Verheyen L; Merckx R; Smolders E
    Environ Sci Technol; 2011 Apr; 45(7):2584-90. PubMed ID: 21405071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive complexation of metal ions with humic substances.
    Zhou P; Yan H; Gu B
    Chemosphere; 2005 Mar; 58(10):1327-37. PubMed ID: 15686750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous determination of speciation parameters of Cu, Pb, Cd and Zn in model solutions of Suwannee River fulvic acid by pseudopolarography.
    Chakraborty P; Fasfous II; Murimboh J; Chakrabarti CL
    Anal Bioanal Chem; 2007 May; 388(2):463-74. PubMed ID: 17333145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of Cu, Co, and Cs to fluorescent components of natural organic matter (NOM) from three contrasting sites.
    Hume S; Caron F; Siemann S
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20141-20153. PubMed ID: 29748802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal complexation by humic substances in seawater.
    Yang R; Van den Berg CM
    Environ Sci Technol; 2009 Oct; 43(19):7192-7. PubMed ID: 19848121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites.
    Smith DS; Bell RA; Kramer JR
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Sep; 133(1-2):65-74. PubMed ID: 12356517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexation of metal ions, including alkali-earth and lanthanide(III) ions, in aqueous solution by the ligand 2,2',6',2''-terpyridyl.
    Hamilton JM; Anhorn MJ; Oscarson KA; Reibenspies JH; Hancock RD
    Inorg Chem; 2011 Apr; 50(7):2764-70. PubMed ID: 21366261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformations of metal species in ageing humic hydrocolloids studied by competitive ligand and metal exchange.
    Burba P; Van den Bergh J
    Anal Bioanal Chem; 2004 Mar; 378(6):1637-43. PubMed ID: 15214428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of metal ion size-based selectivity through chelate ring geometry. metal ion complexing properties of 2,2'-biimidazole.
    Buist D; Williams NJ; Reibenspies JH; Hancock RD
    Inorg Chem; 2010 Jun; 49(11):5033-9. PubMed ID: 20446716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced metal ion selectivity of 2,9-di-(pyrid-2-yl)-1,10-phenanthroline and its use as a fluorescent sensor for cadmium(II).
    Cockrell GM; Zhang G; VanDerveer DG; Thummel RP; Hancock RD
    J Am Chem Soc; 2008 Jan; 130(4):1420-30. PubMed ID: 18177045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of trace metal humic acid interactions using counterion condensation theory.
    Porasso RD; Benegas JC; Van den Hoop MA; Paoletti S
    Environ Sci Technol; 2002 Sep; 36(17):3815-21. PubMed ID: 12322755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ speciation measurements of trace metals in headwater streams.
    Warnken KW; Lawlor AJ; Lofts S; Tipping E; Davison W; Zhang H
    Environ Sci Technol; 2009 Oct; 43(19):7230-6. PubMed ID: 19848127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of EDDS on metal speciation in soil extracts: measurement and mechanistic multicomponent modeling.
    Koopmans GF; Schenkeveld WD; Song J; Luo Y; Japenga J; Temminghoff EJ
    Environ Sci Technol; 2008 Feb; 42(4):1123-30. PubMed ID: 18351082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of trace metal binding properties of lignin by diffusive gradients in thin films.
    Hojaji E
    Chemosphere; 2012 Sep; 89(3):319-26. PubMed ID: 22608133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.
    Weng L; Temminghoff EJ; Lofts S; Tipping E; Van Riemsdijk WH
    Environ Sci Technol; 2002 Nov; 36(22):4804-10. PubMed ID: 12487303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.