These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19475959)

  • 41. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.
    Worms IA; Adenmatten D; Miéville P; Traber J; Slaveykova VI
    Chemosphere; 2015 Nov; 138():908-15. PubMed ID: 25563161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding.
    Christl I; Milne CJ; Kinniburgh DG; Kretzschmar R
    Environ Sci Technol; 2001 Jun; 35(12):2512-7. PubMed ID: 11432556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of Cd(II), Cu(II), and Pb(II) biouptake by green algae in the presence of humic acid.
    Lamelas C; Slaveykova VI
    Environ Sci Technol; 2007 Jun; 41(11):4172-8. PubMed ID: 17612207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complexes of greatly enhanced thermodynamic stability and metal ion size-based selectivity, formed by the highly preorganized non-macrocyclic ligand 1,10-phenanthroline-2,9-dicarboxylic acid. A thermodynamic and crystallographic study.
    Melton DL; Vanderveer DG; Hancock RD
    Inorg Chem; 2006 Nov; 45(23):9306-14. PubMed ID: 17083230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lanthanide--humic substances complexation. II. Calibration of humic ion-binding model V.
    Sonke JE
    Environ Sci Technol; 2006 Dec; 40(24):7481-7. PubMed ID: 17256484
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry.
    Rellán-Alvarez R; Abadía J; Alvarez-Fernández A
    Rapid Commun Mass Spectrom; 2008 May; 22(10):1553-62. PubMed ID: 18421700
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash.
    Van Zomeren A; Comans RN
    Environ Sci Technol; 2004 Jul; 38(14):3927-32. PubMed ID: 15298202
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time.
    Kulikowska D; Gusiatin ZM; Bułkowska K; Klik B
    J Hazard Mater; 2015 Dec; 300():882-891. PubMed ID: 26462121
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.
    Han S; Naito W; Masunaga S
    Water Sci Technol; 2016; 74(4):896-903. PubMed ID: 27533864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interpretation of the differential UV-visible absorbance spectra of metal-NOM complexes based on the quantum chemical simulations for the model compound esculetin.
    Zhang C; Han X; Korshin GV; Kuznetsov AM; Yan M
    Chemosphere; 2021 Aug; 276():130043. PubMed ID: 33706178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal cation complexation with natural organic matter in aqueous solutions: molecular dynamics simulations and potentials of mean force.
    Iskrenova-Tchoukova E; Kalinichev AG; Kirkpatrick RJ
    Langmuir; 2010 Oct; 26(20):15909-19. PubMed ID: 20857966
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unusual metal ion selectivities of the highly preorganized tetradentrate ligand 1,10-phenanthroline-2,9-dicarboxamide: a thermodynamic and fluorescence study.
    Merrill D; Harrington JM; Lee HS; Hancock RD
    Inorg Chem; 2011 Sep; 50(17):8348-55. PubMed ID: 21790135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative examination of effects of binding of different metals on chromophores of dissolved organic matter.
    Yan M; Korshin GV
    Environ Sci Technol; 2014 Mar; 48(6):3177-85. PubMed ID: 24548240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complexation of metal ions of higher charge by the highly preorganized tetradentate ligand 2,9-bis(hydroxymethyl)-1,10-phenanthroline. A crystallographic and thermodynamic study.
    Gephart RT; Williams NJ; Reibenspies JH; De Sousa AS; Hancock RD
    Inorg Chem; 2009 Sep; 48(17):8201-9. PubMed ID: 19670883
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chromium(III) complexation to natural organic matter: mechanisms and modeling.
    Gustafsson JP; Persson I; Oromieh AG; van Schaik JW; Sjöstedt C; Kleja DB
    Environ Sci Technol; 2014; 48(3):1753-61. PubMed ID: 24422446
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter.
    Wang J; Huang CP; Allen HE
    Water Res; 2003 Dec; 37(20):4835-42. PubMed ID: 14604629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complexation of aqueous elements by DOC in a clay aquitard.
    Reszat TN; Hendry MJ
    Ground Water; 2007; 45(5):542-53. PubMed ID: 17760581
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strong copper-binding behavior of terrestrial humic substances in seawater.
    Kogut MB; Voelker BM
    Environ Sci Technol; 2001 Mar; 35(6):1149-56. PubMed ID: 11347927
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding.
    Christl I; Metzger A; Heidmann I; Kretzschmar R
    Environ Sci Technol; 2005 Jul; 39(14):5319-26. PubMed ID: 16082962
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modelling the potential mobility of Cd, Cu, Ni, Pb and Zn in Mollic Fluvisols.
    Rennert T; Rinklebe J
    Environ Geochem Health; 2017 Dec; 39(6):1291-1304. PubMed ID: 28540510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.