These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19475977)

  • 1. Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons.
    Lee SS; Lee JY; Keener TC
    Environ Sci Technol; 2009 Apr; 43(8):2957-62. PubMed ID: 19475977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of copper chloride-impregnated sorbents on mercury vapor control in an entrained-flow reactor system.
    Lee SS; Lee JY; Keener TC
    J Air Waste Manag Assoc; 2008 Nov; 58(11):1458-62. PubMed ID: 19044161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.
    Ghorishi SB; Keeney RM; Serre SD; Gullett BK; Jozewicz WS
    Environ Sci Technol; 2002 Oct; 36(20):4454-9. PubMed ID: 12387423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrained-flow adsorption of mercury using activated carbon.
    Serre SD; Gullett BK; Ghorishi SB
    J Air Waste Manag Assoc; 2001 May; 51(5):733-41. PubMed ID: 11355461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH; Yan NQ; Liu ZR; Qu Z; Wang HP; Chang SG; Miller C
    Environ Sci Technol; 2007 Feb; 41(4):1405-12. PubMed ID: 17593749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a mercury transformation model in coal combustion flue gas.
    Zhuang Y; Thompson JS; Zygarlicke CJ; Pavlish JH
    Environ Sci Technol; 2004 Nov; 38(21):5803-8. PubMed ID: 15575303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases.
    Olson ES; Crocker CR; Benson SA; Pavlish JH; Holmes MJ
    J Air Waste Manag Assoc; 2005 Jun; 55(6):747-54. PubMed ID: 16022412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of vapor-phase elemental mercury from stack emissions with sulfur-impregnated activated carbon.
    Sowlat MH; Abdollahi M; Gharibi H; Yunesian M; Rastkari N
    Rev Environ Contam Toxicol; 2014; 230():1-34. PubMed ID: 24609516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury removal from MSW incineration flue gas by mineral-based sorbents.
    Rumayor M; Svoboda K; Švehla J; Pohořelý M; Šyc M
    Waste Manag; 2018 Mar; 73():265-270. PubMed ID: 29248369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.
    Li X; Liu Z; Lee JY
    J Hazard Mater; 2013 May; 252-253():419-27. PubMed ID: 23562985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver impregnated carbon for adsorption and desorption of elemental mercury vapors.
    Karatza D; Prisciandaro M; Lancia A; Musmarra D
    J Environ Sci (China); 2011; 23(9):1578-84. PubMed ID: 22432297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The experimental study to Hg0 adsorption of fly ash in flue gas].
    Wang L; Peng S; Chen C
    Huan Jing Ke Xue; 2003 Nov; 24(6):59-62. PubMed ID: 14768566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
    Li D; Han J; Han L; Wang J; Chang L
    J Environ Sci (China); 2014 Jul; 26(7):1497-504. PubMed ID: 25079999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents.
    Ballestero D; Gómez-Giménez C; García-Díez E; Juan R; Rubio B; Izquierdo MT
    J Hazard Mater; 2013 Sep; 260():247-54. PubMed ID: 23774780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Concentration Mercury Sorption Mechanisms and Control by Calcium-Based Sorbents: Application in Coal-Fired Processes.
    Ghorishi SB; Sedman CB
    J Air Waste Manag Assoc; 1998 Dec; 48(12):1191-1198. PubMed ID: 28060620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of mercury binding onto a novel brominated biomass ash sorbent by X-ray absorption spectroscopy.
    Bisson TM; MacLean LC; Hu Y; Xu Z
    Environ Sci Technol; 2012 Nov; 46(21):12186-93. PubMed ID: 23020596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.
    Park J; Lee SS
    J Air Waste Manag Assoc; 2018 Oct; 68(10):1077-1084. PubMed ID: 29693499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of elemental mercury vapors from synthetic exhaust combustion gas onto HGR carbon.
    Musmarra D; Karatza D; Lancia A; Prisciandaro M; Mazziotti di Celso G
    J Air Waste Manag Assoc; 2016 Jul; 66(7):698-706. PubMed ID: 27043167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.