These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 19476355)

  • 1. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery.
    Chen H; Armand M; Courty M; Jiang M; Grey CP; Dolhem F; Tarascon JM; Poizot P
    J Am Chem Soc; 2009 Jul; 131(25):8984-8. PubMed ID: 19476355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries.
    Chen H; Armand M; Demailly G; Dolhem F; Poizot P; Tarascon JM
    ChemSusChem; 2008; 1(4):348-55. PubMed ID: 18605101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethoxycarbonyl-based organic electrode for Li-batteries.
    Walker W; Grugeon S; Mentre O; Laruelle S; Tarascon JM; Wudl F
    J Am Chem Soc; 2010 May; 132(18):6517-23. PubMed ID: 20405915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-potential reversible Li deintercalation in a substituted tetrahydroxy-p-benzoquinone dilithium salt: an experimental and theoretical study.
    Barrès AL; Geng J; Bonnard G; Renault S; Gottis S; Mentré O; Frayret C; Dolhem F; Poizot P
    Chemistry; 2012 Jul; 18(28):8800-12. PubMed ID: 22689440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of pyromellitic diimide dilithium salt.
    Renault S; Geng J; Dolhem F; Poizot P
    Chem Commun (Camb); 2011 Feb; 47(8):2414-6. PubMed ID: 21170429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rechargeable LI2O2 electrode for lithium batteries.
    Ogasawara T; Débart A; Holzapfel M; Novák P; Bruce PG
    J Am Chem Soc; 2006 Feb; 128(4):1390-3. PubMed ID: 16433559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries.
    Zhong Z; Ouyang C; Shi S; Lei M
    Chemphyschem; 2008 Oct; 9(14):2104-8. PubMed ID: 18729122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery.
    Wang Q; Sun J; Chen C
    J Hazard Mater; 2009 Aug; 167(1-3):1209-14. PubMed ID: 19261386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superlattice formation in the lithiated vanadium oxide phases Li(0.67)V(6)O(13) and LiV(6)O(13).
    Björk H; Lidin S; Gustafsson T; Thomas JO
    Acta Crystallogr B; 2001 Dec; 57(Pt 6):759-65. PubMed ID: 11717474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full structural and electrochemical characterization of Li2Ti6O13 as anode for Li-ion batteries.
    Pérez-Flores JC; Baehtz C; Hoelzel M; Kuhn A; García-Alvarado F
    Phys Chem Chem Phys; 2012 Feb; 14(8):2892-9. PubMed ID: 22258437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thermal annealing on the Li(+) intercalation properties of V(2)O(5) x nH(2)O xerogel films.
    Wang Y; Shang H; Chou T; Cao G
    J Phys Chem B; 2005 Jun; 109(22):11361-6. PubMed ID: 16852388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Co2P on electrochemical performance of Li(Mn0.35Co0.2Fe0.45)PO4/C.
    Kuo HT; Chan TS; Bagkar NC; Liu GQ; Liu RS; Shen CH; Shy DS; Xing XK; Chen JM
    J Phys Chem B; 2008 Jul; 112(27):8017-23. PubMed ID: 18558734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery.
    Nishimura S; Nakamura M; Natsui R; Yamada A
    J Am Chem Soc; 2010 Oct; 132(39):13596-7. PubMed ID: 20831186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2.
    Armstrong AR; Holzapfel M; Novák P; Johnson CS; Kang SH; Thackeray MM; Bruce PG
    J Am Chem Soc; 2006 Jul; 128(26):8694-8. PubMed ID: 16802836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Si-O-C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics.
    Fukui H; Ohsuka H; Hino T; Kanamura K
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):998-1008. PubMed ID: 20423119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Li-ion diffusion in the equilibrium nanomorphology of spinel Li(4+x)Ti(5)O(12).
    Wagemaker M; van Eck ER; Kentgens AP; Mulder FM
    J Phys Chem B; 2009 Jan; 113(1):224-30. PubMed ID: 19118486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.