These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 19476366)
1. Direct observation of transitions between surface-dominated and bulk diffusion regimes in nanochannels. Durand NF; Dellagiacoma C; Goetschmann R; Bertsch A; Märki I; Lasser T; Renaud P Anal Chem; 2009 Jul; 81(13):5407-12. PubMed ID: 19476366 [TBL] [Abstract][Full Text] [Related]
2. A new concept for ultrasensitive fluorescence measurements of molecules in solution and membrane: 1. Theory and a first application. Földes-Papp Z; Demel U; Tilz GP J Immunol Methods; 2004 Mar; 286(1-2):1-11. PubMed ID: 15087217 [TBL] [Abstract][Full Text] [Related]
3. Droplet confinement and fluorescence measurement of single molecules. Goldner LS; Jofre AM; Tang J Methods Enzymol; 2010; 472():61-88. PubMed ID: 20580960 [TBL] [Abstract][Full Text] [Related]
4. Size dependence of protein diffusion very close to membrane surfaces: measurement by total internal reflection with fluorescence correlation spectroscopy. Pero JK; Haas EM; Thompson NL J Phys Chem B; 2006 Jun; 110(22):10910-8. PubMed ID: 16771344 [TBL] [Abstract][Full Text] [Related]
5. Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations. Moran-Mirabal JM; Craighead HG Methods; 2008 Sep; 46(1):11-7. PubMed ID: 18586103 [TBL] [Abstract][Full Text] [Related]
6. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide. Oh YJ; Gamble TC; Leonhardt D; Chung CH; Brueck SR; Ivory CF; Lopez GP; Petsev DN; Han SM Lab Chip; 2008 Feb; 8(2):251-8. PubMed ID: 18231663 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence correlation spectroscopy for ultrasensitive DNA analysis in continuous flow capillary electrophoresis. Fogarty K; Van Orden A Methods; 2009 Mar; 47(3):151-8. PubMed ID: 18852049 [TBL] [Abstract][Full Text] [Related]
9. Subdiffusive molecular motion in nanochannels observed by fluorescence correlation spectroscopy. De Santo I; Causa F; Netti PA Anal Chem; 2010 Feb; 82(3):997-1005. PubMed ID: 20047288 [TBL] [Abstract][Full Text] [Related]
10. FCS cell surface measurements--photophysical limitations and consequences on molecular ensembles with heterogenic mobilities. Widengren J; Thyberg P Cytometry A; 2005 Dec; 68(2):101-12. PubMed ID: 16237686 [TBL] [Abstract][Full Text] [Related]
11. Diffusioosmotic flows in slit nanochannels. Qian S; Das B; Luo X J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence correlation spectroscopy in living cells. Kim SA; Heinze KG; Schwille P Nat Methods; 2007 Nov; 4(11):963-73. PubMed ID: 17971781 [TBL] [Abstract][Full Text] [Related]
13. Local and average diffusion of nanosolutes in agarose gel: the effect of the gel/solution interface structure. Labille J; Fatin-Rouge N; Buffle J Langmuir; 2007 Feb; 23(4):2083-90. PubMed ID: 17279699 [TBL] [Abstract][Full Text] [Related]
14. A closed form for fluorescence correlation spectroscopy experiments in submicrometer structures. Sanguigno L; De Santo I; Causa F; Netti P Anal Chem; 2010 Dec; 82(23):9663-70. PubMed ID: 21038906 [TBL] [Abstract][Full Text] [Related]
15. Detection of long-range electrostatic interactions between charged molecules by means of fluorescence correlation spectroscopy. Nardecchia I; Lechelon M; Gori M; Donato I; Preto J; Floriani E; Jaeger S; Mailfert S; Marguet D; Ferrier P; Pettini M Phys Rev E; 2017 Aug; 96(2-1):022403. PubMed ID: 28950524 [TBL] [Abstract][Full Text] [Related]
16. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control. Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence correlation spectroscopy in cells: confinement and excluded volume effects. von der Hocht I; Enderlein J Exp Mol Pathol; 2007 Apr; 82(2):142-6. PubMed ID: 17303119 [TBL] [Abstract][Full Text] [Related]
18. New concepts for fluorescence correlation spectroscopy on membranes. Ries J; Schwille P Phys Chem Chem Phys; 2008 Jun; 10(24):3487-97. PubMed ID: 18548154 [TBL] [Abstract][Full Text] [Related]
19. Direct studies of liquid flows near solid surfaces by total internal reflection fluorescence cross-correlation spectroscopy. Yordanov S; Best A; Butt HJ; Koynov K Opt Express; 2009 Nov; 17(23):21149-58. PubMed ID: 19997354 [TBL] [Abstract][Full Text] [Related]
20. Chapter 1: In vivo applications of fluorescence correlation spectroscopy. Chen H; Farkas ER; Webb WW Methods Cell Biol; 2008; 89():3-35. PubMed ID: 19118670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]